Scope and purpose

The objective of this guideline is to provide recommendations on the consumption of sodium for most adults and children. It is important to establish nutrient guidelines so that nutrition interventions can be developed in a logical, systematic, and scientific manner taking into account the best available evidence. The recommendations in this guideline can be used by programme and policy planners to assess current sodium intake levels relative to a benchmark and develop measures to decrease sodium intake, where necessary, through public health interventions including, but not limited to, food and product labelling, consumer education, and the establishment of Food-Based Dietary Guidelines (FBDG). This guideline does not provide guidance on specific food intake because such dietary guidelines should be based on the overall dietary goals, which take into consideration all required nutrients. It should be used in conjunction with the guideline on potassium intake and other nutrient guidelines to guide public health nutrition programme and policy development.

This guideline provides a global, evidence-informed recommendation on sodium intake for:

  • adults (≥16 years of age) for the reduction of blood pressure and risk of

cardiovascular disease, stroke and coronary heart disease;

  • children (2–15 years of age) for the control of blood pressure.

The guideline does not provide recommendations for individuals with illnesses or taking drug therapy that may lead to hyponatraemia or acute build-up of body water, or require physician-supervised diets (e.g. patients with heart failure and those with type I diabetes). These special subpopulations were not considered in the review of the evidence and generation of the guideline because, in these subpopulations, there may be a particular relationship between sodium intake and the health outcomes of interest (10, 11).

The guideline will help Member States and their partners to make informed decisions on the appropriate nutrition actions to reduce noncommunicable diseases (NCDs). It is intended for a wide audience, including policy-makers and their expert advisers, and technical and programme staff in organizations involved in the design, implementation and scaling-up of nutrition actions for public health.

This document presents the key recommendations and a summary of the supporting evidence. Further details of the evidence base are provided in Annex 1 and other documents listed in the references.


NCDs are the leading cause of death globally, killing more people each year than all other causes combined (14). The major NCDs currently account for approximately 60% of all deaths and 43% of disease burden globally, and these levels are expected to continue to rise (2, 15). In 2008, 29 million NCD-related deaths (almost 80%) occurred in low and middle-income countries. In those countries, 29% of NCD-related deaths were in people under 60 years of age; in contrast, in high-income countries, only 13% of such deaths were premature. In 2005, cardiovascular disease itself accounted for 30% of all deaths: the equivalent of infectious disease, nutritional deficiency, and maternal and perinatal conditions combined (2).

Hypertension is considered a major risk for cardiovascular disease, espescially heart attack and stroke. Suboptimal systolic blood pressure (>115 mmHg) is estimated to contribute to 49% of all coronary heart disease and 62% of all stroke (13). Thus, the burden of morbidity and mortality from hypertension and related NCDs is currently one of the most urgent public health problems globally. Although NCDs disproportionately affect adults, they and their risk factors are now being detected more frequently in paediatric populations. Diet-related NCDs are chronic, and take years and decades to manifest; thus, delaying the onset of these diseases could improve lives and result in substantial cost savings (3). Blood pressure during childhood has a significant association with blood pressure during adulthood, meaning that children with increased blood pressure are at high risk for hypertension and its related morbidities as adults (16). Additionally, elevated blood pressure in childhood contributes to cardiovascular disease pathology during childhood itself (17). Thus, addressing, during childhood, the problem of elevated blood pressure and other risk factors for NCDs that could manifest later in life is crucial to combat NCDs.

Sodium is the principal cation in extracellular fluid in the body, and is an essential nutrient necessary for maintenance of plasma volume, acid–base balance, transmission of nerve impulses and normal cell function. In healthy individuals, nearly 100% of ingested sodium is absorbed during digestion, and urinary excretion is the primary mechanism for maintaining sodium balance (18). Even in hot, humid climates, there are only minimal loses through faeces and sweat. Acclimation to heat occurs rapidly; thus, within a few days of exposure to hot and humid conditions, individuals lose only small amounts of sodium through sweat (19, 20). Under conditions of extreme heat and intense physical activity that result in high sweat production, sodium losses in sweat are increased and appreciable; nonetheless, most individuals can replace the necessary sodium through food consumption, without dietary alterations, supplements or specially formulated products (19-21).

Sodium and chloride are the chemical components of common table salt; however, sodium can be found in other forms, and the primary contributors to dietary sodium consumption depend on the cultural context and dietary habits of a population (22). Sodium is found naturally in a variety of foods, such as milk, meat and shellfish (Annex 2). It is often found in high amounts in processed foods such as breads, crackers, processed meats and snack foods (23-26). High amounts of sodium are also found in many condiments (e.g. soy and fish sauces) (23). Thus, a diet high in processed foods and low in fresh fruits and vegetables is often high in sodium (24, 26). Although the minimum intake level necessary for proper bodily function is not well defined, it is estimated to be as little as 200–500 mg/day (18, 27). Data from around the world suggest that the population average sodium consumption is well above the minimal physiological needs, and in many countries is above the value recommended by the 2002 Joint World Health Organization/Food and Agriculture Organization of the United Nations (WHO/ FAO) Expert Consultation (12) of 2 g sodium/day (equivalent to 5 g salt/day) (22).

Increased sodium consumption is associated with increased blood pressure, whereas lower sodium consumption appears to decrease blood pressure in adults (12, 28-30). A number of recent high-quality systematic reviews of randomized- controlled trials (RCTs) have concluded that decreased sodium intake relative to usual or higher intake results in lowered blood pressure in adults with or without hypertension (30-33). A review concerning advice to reduce sodium consumption concluded that intensive behaviour-change interventions targeting decreasing sodium intake successfully reduced blood pressure in adults with or without hypertension (34) However, the reductions in sodium intake and in blood pressure were modest, and the authors concluded that environmental changes (e.g. reduction of sodium in processed foods) would facilitate a greater reduction in sodium consumption and, therefore, have a greater impact on blood pressure.

Increased sodium has also been associated with cardiovascular diseases (7, 35), although the evidence is less clear than that for blood pressure. A recent systematic review of RCTs that reported cardiovascular disease and stroke found no relationship between sodium intake and cardiovascular disease. However, few RCTs reported cardiovascular disease outcomes; hence, there was insufficient evidence to substantiate a relationship between sodium intake and these outcomes (36). Numerous observational cohort studies have explored the relationship between sodium intake and cardiovascular disease. Most of these studies have reported a direct relationship between sodium intake and cardiovascular disease, stroke or coronary heart disease. However, others have reported no relationship, an inverse relationship or even a J-shaped relationship (i.e. increased risk at both the lowest and the highest sodium intake levels). A recent meta-analysis of 13 cohort studies of a duration of 4 years or more, which did not include the most recently published observational cohort studies (37, 38), concluded that there was a direct relationship between increased sodium consumption and subsequent risk of cardiovascular disease and stroke (35).

There is little disagreement that decreased sodium intake decreases blood pressure, but there is some concern that it might also lead to adverse effects in health. Decreased sodium intake results in reduced blood volume and thus activates the renin– angiotensin–aldosterone and sympathetic nervous systems (indicated by increased adrenaline and noradrenaline), which help to control blood volume (39). Likewise, a reduction in blood volume without a concurrent reduction in blood lipids can lead to an increased concentration of lipids in the blood. A recent systematic review reported an increase in renin, aldosterone, adrenaline and noradrenaline, total cholesterol and triglyceride with reduced sodium (33). However, the changes in blood lipids and catecholamine levels were transient and no longer present after 4 weeks of reduced sodium intake (33). Although the changes in renin and aldosterone levels persisted with longer term reduced sodium intake, the importance of these changes is uncertain (40, 41). An increased risk of cardiovascular morbidity and mortality with increased renin or aldosterone level has been reported (42, 43), but the evidence is not conclusive (44, 45). Unlike blood pressure, a change in these hormones is not currently recognized as a reliable biomarker for future risk (41, 46).


Much of the human and social impact caused each year by NCD-related morbidity and mortality could be averted through interventions that are well understood, cost effective and feasible (14). Decreased sodium intake in the population is a cost-effective public health intervention that could potentially reduce the burden of NCD morbidity and mortality (3). Because of the ever-increasing importance of NCDs on health-care costs and burden of disease (2, 3, 15), Members States requested WHO to update its guideline on sodium intake for adults and to develop a guideline on sodium intake for children, to inform public policy.

Before a guideline can be generated, benefits and potential harms should be assessed. Some researchers have reported that reducing sodium intake to levels even below those currently recommended by WHO would lead to even greater health benefits (30). Conversely, others have questioned the importance of the modest reduction in blood pressure caused by decreased sodium intake in individuals without hypertension (33). Additionally, two recently published cohort studies have proposed that reducing sodium intake to <2 g/day may be associated with increased risk of cardiovascular disease and stroke (37, 38). The continued debate over the effect of sodium consumption and health outcomes, and the recent research that is continuously adding to the evidence base in the scientific literature, warrant a complete systematic review of all available epidemiological evidence considering sodium and blood pressure, all-cause mortality, cardiovascular disease, stroke, coronary heart disease and potential adverse effects (e.g. changes in blood lipids, catecholamine levels and renal function).