NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Neuroscience

Neuroscience. 2nd edition.

Show details

The Refractory Period

The depolarization that produces Na+ channel opening also causes delayed activation of K+ channels and Na+ channel inactivation, leading to repolarization of the membrane potential as the action potential sweeps along the length of an axon (see Figure 3.12). In its wake, the action potential leaves the Na+ channels inactivated and K+ channels activated for a brief time. These transitory changes make it harder for the axon to produce subsequent action potentials during this interval, which is called the refractory period. Thus, the refractory period limits the number of action potentials that a given nerve cell can produce per unit time. As might be expected, different types of neurons have different maximum rates of action potential firing due to different types and densities of ion channels. The refractoriness of the membrane in the wake of the action potential explains why action potentials do not propagate back toward the point of their initiation as they travel along an axon.

Image ch3f12

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2001, Sinauer Associates, Inc.
Bookshelf ID: NBK11146

Views

  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...