NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Neuroscience

Neuroscience. 2nd edition.

Show details

Chemical Synapses

The general structure of a chemical synapse is shown schematically in Figure 5.1B. The space between the pre- and postsynaptic neurons is substantially greater at chemical synapses than at electrical synapses and is called the synaptic cleft. However, the key feature of all chemical synapses is the presence of small, membrane-bounded organelles called synaptic vesicles within the presynaptic terminal. These spherical organelles are filled with one or more neurotransmitters, the chemical signals secreted from the presynaptic neuron, and it is these chemical agents acting as messengers between the communicating neurons that gives this type of synapse its name. There are many kinds of neurotransmitters (see Chapter 6), the best studied example being acetylcholine, the transmitter employed at peripheral neuromuscular synapses, in autonomic ganglia, and at some central synapses.

Transmission at chemical synapses is based on the elaborate sequence of events depicted in Figure 5.3. The process is initiated when an action potential invades the terminal of the presynaptic neuron. The change in membrane potential caused by the arrival of the action potential leads to the opening of voltage-gated calcium channels in the presynaptic membrane. Because of the steep concentration gradient of Ca2+ across the presynaptic membrane (the external Ca2+ concentration is approximately 10–3 M, whereas the internal Ca2+ concentration is approximately 10–7 M), the opening of these channels causes a rapid influx of Ca2+ into the presynaptic terminal, with the result that the Ca2+ concentration of the cytoplasm in the terminal transiently rises to a much higher value. Elevation of the presynaptic Ca2+ concentration, in turn, allows synaptic vesicles to fuse with the plasma membrane of the presynaptic neuron. The Ca2+-dependent fusion of synaptic vesicles with the terminal membrane causes their contents, most importantly neurotransmitters, to be released into the synaptic cleft.

Figure 5.3. Sequence of events involved in transmission at a typical chemical synapse.

Figure 5.3

Sequence of events involved in transmission at a typical chemical synapse.

Following exocytosis, transmitters diffuse across the synaptic cleft and bind to specific receptors on the membrane of the postsynaptic neuron (see Chapter 7). The binding of neurotransmitter to the receptors causes channels in the postsynaptic membrane to open (or sometimes to close), thus changing the ability of ions to flow into (or out of) the postsynaptic cells. The resulting neurotransmitter-induced current flow alters the conductance and usually the membrane potential of the postsynaptic neuron, increasing or decreasing the probability that the neuron will fire an action potential. In this way, information is transmitted from one neuron to another.

Image ch5f1

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2001, Sinauer Associates, Inc.
Bookshelf ID: NBK11009

Views

  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...