NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Neuroscience

Neuroscience. 2nd edition.

Show details

Mechanoreceptors Specialized to Receive Tactile Information

Four major types of encapsulated mechanoreceptors are specialized to provide information to the central nervous system about touch, pressure, vibration, and cutaneous tension: Meissner's corpuscles, Pacinian corpuscles, Merkel's disks, and Ruffini's corpuscles (Figure 9.3 and Table 9.1). These receptors are referred to collectively as low-threshold (or high-sensitivity) mechanoreceptors because even weak mechanical stimulation of the skin induces them to produce action potentials. All low-threshold mechanoreceptors are innervated by relatively large myelinated axons (type Aβ; see Table 9.1), ensuring the rapid central transmission of tactile information.

Figure 9.3. The skin harbors a variety of morphologically distinct mechanoreceptors.

Figure 9.3

The skin harbors a variety of morphologically distinct mechanoreceptors. This diagram represents the smooth, hairless (also called glabrous) skin of the fingertip. The major characteristics of the various receptor types are summarized in Table 9.1. (After (more...)

Meissner's corpuscles, which lie between the dermal papillae just beneath the epidermis of the fingers, palms, and soles, are elongated receptors formed by a connective tissue capsule that comprises several lamellae of Schwann cells. The center of the capsule contains one or more afferent nerve fibers that generate rapidly adapting action potentials following minimal skin depression. Meissner's corpuscles are the most common mechanoreceptors of “glabrous” (smooth, hairless) skin (the fingertips, for instance), and their afferent fibers account for about 40% of the sensory innervation of the human hand. These corpuscles are particularly efficient in transducing information about the relatively low-frequency vibrations (30–50 Hz) that occur when textured objects are moved across the skin.

Pacinian corpuscles are large encapsulated endings located in the subcutaneous tissue (and more deeply in interosseous membranes and mesenteries of the gut). These receptors differ from Meissner's corpuscles in their morphology, distribution, and response threshold. The Pacinian corpuscle has an onionlike capsule in which the inner core of membrane lamellae is separated from an outer lamella by a fluid-filled space. One or more rapidly adapting afferent axons lie at the center of this structure. The capsule again acts as a filter, in this case allowing only transient disturbances at high frequencies (250–350 Hz) to activate the nerve endings. Pacinian corpuscles adapt more rapidly than Meissner's corpuscles and have a lower response threshold. These attributes suggest that Pacinian corpuscles are involved in the discrimination of fine surface textures or other moving stimuli that produce high-frequency vibration of the skin. In corroboration of this supposition, stimulation of Pacinian corpuscle afferent fibers in humans induces a sensation of vibration or tickle. They make up 10–15% of the cutaneous receptors in the hand. Pacinian corpuscles located in interosseous membranes probably detect vibrations transmitted to the skeleton. Structurally similar endings found in the bills of ducks and geese and in the legs of cranes and herons detect vibrations in water; such endings in the wings of soaring birds detect vibrations produced by air currents. Because they are rapidly adapting, Pacinian corpuscles, like Meissner's corpuscles, provide information primarily about the dynamic qualities of mechanical stimuli.

Slowly adapting cutaneous mechanoreceptors include Merkel's disks and Ruffini's corpuscles (see Figure 9.3 and Table 9.1). Merkel's disks are located in the epidermis, where they are precisely aligned with the papillae that lie beneath the dermal ridges. They account for about 25% of the mechanoreceptors of the hand and are particularly dense in the fingertips, lips, and external genitalia. The slowly adapting nerve fiber associated with each Merkel's disk enlarges into a saucer-shaped ending that is closely applied to another specialized cell containing vesicles that apparently release peptides that modulate the nerve terminal. Selective stimulation of these receptors in humans produces a sensation of light pressure. These several properties have led to the supposition that Merkel's disks play a major role in the static discrimination of shapes, edges, and rough textures.

Ruffini's corpuscles, although structurally similar to other tactile receptors, are not well understood. These elongated, spindle-shaped capsular specializations are located deep in the skin, as well as in ligaments and tendons. The long axis of the corpuscle is usually oriented parallel to the stretch lines in skin; thus, Ruffini's corpuscles are particularly sensitive to the cutaneous stretching produced by digit or limb movements. They account for about 20% of the receptors in the human hand and do not elicit any particular tactile sensation when stimulated electrically. Although there is still some question as to their function, they probably respond primarily to internally generated stimuli (see the section on proprioception below).

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2001, Sinauer Associates, Inc.
Bookshelf ID: NBK10895


  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...