NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

  • By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.
Cover of Neuroscience

Neuroscience. 2nd edition.

Show details

The Spinal Cord Circuitry Underlying Muscle Stretch Reflexes

The local circuitry within the spinal cord mediates a number of sensory motor reflex actions. The simplest of these reflex arcs entails the response to muscle stretch, which provides direct excitatory feedback to the motor neurons innervating the muscle that has been stretched (Figure 16.9). As already mentioned, the sensory signal for the stretch reflex originates in muscle spindles, sensory receptors embedded within most muscles (see previous section and Chapter 9). The spindles comprise 8–10 intrafusal fibers arranged in parallel with the extrafusal fibers that make up the bulk of the muscle (Figure 16.9A). Large-diameter sensory fibers, called Ia afferents, are coiled around the central part of the spindle. These afferents are the largest axons in peripheral nerves and, since action potential conduction velocity is a direct function of axon diameter (see Chapters 2 and 3), they allow for very rapid adjustments in this reflex arc when the muscle is stretched. The stretch imposed on the muscle deforms the intrafusal muscle fibers, which in turn initiate action potentials by activating mechanically gated ion channels in the afferent axons coiled around the spindle. The centrally projecting branch of the sensory neuron forms monosynaptic excitatory connections with the α motor neurons in the ventral horn of the spinal cord that innervate the same (homonymous) muscle and, via local circuit neurons, inhibitory connections with the α motor neurons of antagonistic (heteronymous) muscles. This arrangement is an example of what is called reciprocal innervation and results in rapid contraction of the stretched muscle and simultaneous relaxation of the antagonist muscle. All of this leads to especially rapid and efficient responses to changes in the length or tension in the muscle (Figure 16.9B). The excitatory pathway from a spindle to the α motor neurons innervating the same muscle is unusual in that it is a monosynaptic reflex; in most cases, sensory neurons from the periphery do not contact the lower motor neuron directly but exert their effects through local circuit neurons.

Figure 16.9. Stretch reflex circuitry.

Figure 16.9

Stretch reflex circuitry. (A) Diagram of muscle spindle, the sensory receptor that initiates the stretch reflex. (B) Stretching a muscle spindle leads to increased activity in Ia afferents and an increase in the activity of α motor neurons that (more...)

This monosynaptic reflex arc is variously referred to as the “stretch,” “deep tendon,” or “myotatic reflex,” and it is the basis of the knee, ankle, jaw, biceps, or triceps responses tested in a routine neurological examination. The tap of the reflex hammer on the tendon stretches the muscle and therefore excites a volley of activity from the muscle spindles in the afferent axons. The afferent volley is relayed to the α motor neurons in the brainstem or spinal cord, and an efferent volley returns to the muscle (see Figure 1.5). Since muscles are always under some degree of stretch, this reflex circuit is normally responsible for the steady level of tension in muscles called muscle tone. Changes in muscle tone occur in a variety of pathological conditions, and it is these changes that are assessed by examination of tendon reflexes.

In terms of engineering principles, the stretch reflex arc is a negative feedback loop used to maintain muscle length at a desired value (Figure 16.9C). The appropriate muscle length is specified by the activity of descending pathways that influence the motor neuron pool. Deviations from the desired length are detected by the muscle spindles, since increases or decreases in the stretch of the intrafusal fibers alter the level of activity in the sensory fibers that innervate the spindles. These changes lead in turn to adjustments in the activity of the α motor neurons, returning the muscle to the desired length by contracting the stretched muscle and relaxing the opposed muscle group, and by restoring the level of spindle activity to what it was before.

The smaller γ motor neurons control the functional characteristics of the muscle spindles by modulating their level of excitability. As already described, when the muscle is stretched, the spindle is also stretched and the rate of discharge in the afferent fibers increased. When the muscle shortens, however, the spindle is relieved of tension, or “unloaded,” and the sensory axons that innervate the spindle might therefore be expected to fall silent during contraction. However, they remain active. The γ motor neurons terminate on the contractile poles of the intrafusal fibers, and the activation of these neurons causes intrafusal fiber contraction—in this way maintaining the tension on the middle (or equatorial region) of the intrafusal fibers where the sensory axons terminate. Thus, co-activation of the α and γ motor neurons allows spindles to function (i.e., send information centrally) at all muscle lengths during movements and postural adjustments.

Image ch1f5

By agreement with the publisher, this book is accessible by the search feature, but cannot be browsed.

Copyright © 2001, Sinauer Associates, Inc.
Bookshelf ID: NBK10809


  • Cite this Page
  • Disable Glossary Links

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...