Display Settings:

Format

Send to:

Choose Destination

PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

Phosphatidylinositol-5-phosphate (PI5P) may modulate PI3K/AKT signaling in several ways. PI5P is used as a substrate for production of phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2 (Rameh et al. 1997, Clarke et al. 2008, Clarke et al. 2010, Clarke and Irvine 2013, Clarke et al. 2015), which serves as a substrate for activated PI3K, resulting in the production of PIP3 (Mandelker et al. 2009, Burke et al. 2011). The majority of PI(4,5)P2 in the cell, however, is produced from the phosphatidylinositol-4-phosphate (PI4P) substrate (Zhang et al. 1997, Di Paolo et al. 2002, Oude Weernink et al. 2004, Halstead et al. 2006, Oude Weernink et al. 2007). PIP3 is necessary for the activating phosphorylation of AKT. AKT1 can be deactivated by the protein phosphatase 2A (PP2A) complex that contains a regulatory subunit B56-beta (PPP2R5B) or B56-gamma (PPP2R5C). PI5P inhibits AKT1 dephosphorylation by PP2A through an unknown mechanism (Ramel et al. 2009). Increased PI5P levels correlate with inhibitory phosphorylation(s) of the PP2A complex. MAPK1 (ERK2) and MAPK3 (ERK1) are involved in inhibitory phosphorylation of PP2A, in a process that involves IER3 (IEX-1) (Letourneux et al. 2006, Rocher et al. 2007). It is uncertain, however, whether PI5P is in any way involved in ERK-mediated phosphorylation of PP2A or if it regulates another PP2A kinase.

from REACTOME source record: R-HSA-6811558
Type: pathway
Taxonomic scope
:
organism-specific biosystem
Organism
:
Homo sapiens
BSID:
1383020

Supplemental Content

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
Support Center