5EFV: The Host-recognition Device Of Staphylococcus Aureus Phage Phi11

Phages play key roles in the pathogenicity and adaptation of the human pathogen Staphylococcus aureus. However, little is known about the molecular recognition events that mediate phage adsorption to the surface of S. aureus. The lysogenic siphophage varphi11 infects S. aureus SA113. It was shown previously that varphi11 requires alpha- or beta-N-acetylglucosamine (GlcNAc) moieties on cell wall teichoic acid (WTA) for adsorption. Gp45 was identified as the receptor binding protein (RBP) involved in this process and GlcNAc residues on WTA were found to be the key component of the varphi11 receptor. Here we report the crystal structure of the RBP of varphi11, which assembles into a large, multidomain homotrimer. Each monomer contains a five-bladed propeller domain with a cavity that could accommodate a GlcNAc moiety. An electron microscopy reconstruction of the varphi11 host adhesion component, the baseplate, reveals that six RBP trimers are assembled around the baseplate core. The Gp45 and baseplate structures provide insights into the overall organization and molecular recognition process of the phage varphi11 tail. This assembly is conserved among most glycan-recognizing Siphoviridae, and the RBP orientation would allow host adhesion and infection without an activation step.
PDB ID: 5EFVDownload
MMDB ID: 139497
PDB Deposition Date: 2015/10/26
Updated in MMDB: 2016/07
Experimental Method:
x-ray diffraction
Resolution: 2.2  Å
Source Organism:
Similar Structures:
Biological Unit for 5EFV: trimeric; determined by software (PISA)
Molecular Components in 5EFV
Label Count Molecule
Proteins (3 molecules)
PHI ETA ORF 56-like Protein
Molecule annotation
Chemical (1 molecule)
* Click molecule labels to explore molecular sequence information.

Citing MMDB