4PRO: Alpha-lytic Protease Complexed With Pro Region

While the majority of proteins fold rapidly and spontaneously to their native states, the extracellular bacterial protease alpha-lytic protease (alphaLP) has a t(1/2) for folding of approximately 2,000 years, corresponding to a folding barrier of 30 kcal mol(-1). AlphaLP is synthesized as a pro-enzyme where its pro region (Pro) acts as a foldase to stabilize the transition state for the folding reaction. Pro also functions as a potent folding catalyst when supplied as a separate polypeptide chain, accelerating the rate of alphaLP folding by a factor of 3 x 10(9). In the absence of Pro, alphaLP folds only partially to a stable molten globule-like intermediate state. Addition of Pro to this intermediate leads to rapid formation of native alphaLP. Here we report the crystal structures of Pro and of the non-covalent inhibitory complex between Pro and native alphaLP. The C-shaped Pro surrounds the C-terminal beta-barrel domain of the folded protease, forming a large complementary interface. Regions of extensive hydration in the interface explain how Pro binds tightly to the native state, yet even more tightly to the folding transition state. Based on structural and functional data we propose that a specific structural element in alphaLP is largely responsible for the folding barrier and suggest how Pro can overcome this barrier.
PDB ID: 4PRODownload
MMDB ID: 10377
PDB Deposition Date: 1998/10/1
Updated in MMDB: 2007/10
Experimental Method:
x-ray diffraction
Resolution: 2.4  Å
Source Organism:
Similar Structures:
Biological Unit for 4PRO: dimeric; determined by author
Molecular Components in 4PRO
Label Count Molecule
Proteins (2 molecules)
Alpha-lytic Protease
Molecule annotation
* Click molecule labels to explore molecular sequence information.

Citing MMDB