4LNI: B. Subtilis Glutamine Synthetase Structures Reveal Large Active Site Conformational Changes and Basis for Isoenzyme Specific Regulation: Structure of the Transition State Complex

Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-alpha and GSI-beta. GSI-alpha enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-alpha function, we performed biochemical and cellular studies and obtained structures for all GSI-alpha catalytic and regulatory states. GSI-alpha forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-alpha-specific residue, Arg(62), from an adjacent subunit. Notably, Arg(62) must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-alpha-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens.
PDB ID: 4LNIDownload
MMDB ID: 114919
PDB Deposition Date: 2013/7/11
Updated in MMDB: 2013/11 
Experimental Method:
x-ray diffraction
Resolution: 2.58  Å
Source Organism:
Similar Structures:
Biological Unit for 4LNI: dodecameric; determined by author and by software (PISA)
Molecular Components in 4LNI
Label Count Molecule
Proteins (12 molecules)
Glutamine Synthetase(Gene symbol: glnA)
Molecule annotation
Chemicals (60 molecules)
* Click molecule labels to explore molecular sequence information.

Citing MMDB