4GP3: The Crystal Structure Of Human Fascin 1 K358a Mutant

Filopodia are cell surface protrusions that are essential for cell migration. This finger-like structure is supported by rigid tightly bundled actin filaments. The protein responsible for actin bundling in filopodia is fascin. However, the mechanism by which fascin functions in filopodial formation is not clear. Here we provide biochemical, cryo-electron tomographic, and x-ray crystal structural data demonstrating the unique structural characteristics of fascin. Systematic mutagenesis studies on 100 mutants of fascin indicate that there are two major actin-binding sites on fascin. Crystal structures of four fascin mutants reveal concerted conformational changes in fascin from inactive to active states in the process of actin bundling. Mutations in any one of the actin-binding sites impair the cellular function of fascin in filopodial formation. Altogether, our data reveal the molecular mechanism of fascin function in filopodial formation.
PDB ID: 4GP3Download
MMDB ID: 105634
PDB Deposition Date: 2012/8/20
Updated in MMDB: 2012/12
Experimental Method:
x-ray diffraction
Resolution: 2.25  Å
Source Organism:
Similar Structures:
Biological Unit for 4GP3: monomeric; determined by author
Molecular Components in 4GP3
Label Count Molecule
Protein (1 molecule)
Fascin(Gene symbol: FSCN1)
Molecule annotation
Chemicals (11 molecules)
* Click molecule labels to explore molecular sequence information.

Citing MMDB