4C2B: Crystal Structure of High-affinity VON Willebrand Factor A1 Domain With Disulfide Mutation in Complex With High Affinity Gpib Alpha

Activation by elongational flow of von Willebrand factor (VWF) is critical for primary hemostasis. Mutations causing type 2B von Willebrand disease (VWD), platelet-type VWD (PT-VWD), and tensile force each increase affinity of the VWF A1 domain and platelet glycoprotein Ibalpha (GPIbalpha) for one another; however, the structural basis for these observations remains elusive. Directed evolution was used to discover a further gain-of-function mutation in A1 that shifts the long range disulfide bond by one residue. We solved multiple crystal structures of this mutant A1 and A1 containing two VWD mutations complexed with GPIbalpha containing two PT-VWD mutations. We observed a gained interaction between A1 and the central leucine-rich repeats (LRRs) of GPIbalpha, previously shown to be important at high shear stress, and verified its importance mutationally. These findings suggest that structural changes, including central GPIbalpha LRR-A1 contact, contribute to VWF affinity regulation. Among the mutant complexes, variation in contacts and poor complementarity between the GPIbalpha beta-finger and the region of A1 harboring VWD mutations lead us to hypothesize that the structures are on a pathway to, but have not yet reached, a force-induced super high affinity state.
PDB ID: 4C2BDownload
MMDB ID: 116458
PDB Deposition Date: 2013/8/16
Updated in MMDB: 2014/03 
Experimental Method:
x-ray diffraction
Resolution: 2.8  Å
Source Organism:
Similar Structures:
Biological Unit for 4C2B: dimeric; determined by author and by software (PQS)
Molecular Components in 4C2B
Label Count Molecule
Proteins (2 molecules)
VON Willebrand Factor(Gene symbol: VWF)
Molecule annotation
Platelet Glycoprotein IB Alpha Chain(Gene symbol: GP1BA)
Molecule annotation
Chemicals (4 molecules)
* Click molecule labels to explore molecular sequence information.

Citing MMDB