3TZK: Crystal structure of 3-ketoacyl-(acyl-carrier-protein) reductase (FabG)(G92A) from Vibrio cholerae

Citation:
Abstract
UNLABELLED: beta-Ketoacyl-(acyl carrier protein) reductase (FabG) catalyzes the key reductive reaction in the elongation cycle of fatty acid synthesis (FAS), which is a vital metabolic pathway in bacteria and a promising target for new antibiotic development. The activation of the enzyme is usually linked to the formation of a catalytic triad and cofactor binding, and crystal structures of FabG from different organisms have been captured in either the active or inactive conformation. However, the structural elements which enable activation of FabG require further exploration. Here we report the findings of structural, enzymatic, and binding studies of the FabG protein found in the causative agent of cholera, Vibrio cholerae (vcFabG). vcFabG exists predominantly as a dimer in solution and is able to self-associate to form tetramers, which is the state seen in the crystal structure. The formation of the tetramer may be promoted by the presence of the cofactor NADP(H). The transition between the dimeric and tetrameric states of vcFabG is related to changes in the conformations of the alpha4/alpha5 helices on the dimer-dimer interface. Two glycine residues adjacent to the dimer interface (G92 and G141) are identified to be the hinge for the conformational changes, while the catalytic tyrosine (Y155) and a glutamine residue that forms hydrogen bonds to both loop beta4-alpha4 and loop beta5-alpha5 (Q152) stabilize the active conformation. The functions of the aforementioned residues were confirmed by binding and enzymatic assays for the corresponding mutants. IMPORTANCE: This paper describes the results of structural, enzymatic, and binding studies of FabG from Vibrio cholerae (vcFabG). In this work, we dissected the structural elements responsible for the activation of vcFabG. The structural information provided here is essential for the development of antibiotics specifically targeting bacterial FabG, especially for the multidrug-resistant strains of V. cholerae.
PDB ID: 3TZKDownload
MMDB ID: 94526
PDB Deposition Date: 2011/9/27
Updated in MMDB: 2017/11
Experimental Method:
x-ray diffraction
Resolution: 1.8  Å
Source Organism:
Similar Structures:
Biological Unit for 3TZK: tetrameric; determined by author and by software (PISA)
Molecular Components in 3TZK
Label Count Molecule
Proteins (4 molecules)
4
3-oxoacyl-[acyl-carrier Protein] Reductase
Molecule annotation
Chemicals (28 molecules)
1
14
2
14
Molecule information is not avaliable.
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.