3P1G: Crystal Structure of the Xenotropic Murine Leukemia Virus-related Virus (Xmrv) Rnase H Domain

Citation:
Abstract
RNase H inhibitors (RNHIs) have gained attention as potential HIV-1 therapeutics. Although several RNHIs have been studied in the context of HIV-1 reverse transcriptase (RT) RNase H, there is no information on inhibitors that might affect the RNase H activity of other RTs. We performed biochemical, virological, crystallographic, and molecular modeling studies to compare the RNase H function and inhibition profiles of the gammaretroviral xenotropic murine leukemia virus-related virus (XMRV) and Moloney murine leukemia virus (MoMLV) RTs to those of HIV-1 RT. The RNase H activity of XMRV RT is significantly lower than that of HIV-1 RT and comparable to that of MoMLV RT. XMRV and MoMLV, but not HIV-1 RT, had optimal RNase H activities in the presence of Mn(2+) and not Mg(2+). Using hydroxyl-radical footprinting assays, we demonstrated that the distance between the polymerase and RNase H domains in the MoMLV and XMRV RTs is longer than that in the HIV-1 RT by approximately 3.4 A. We identified one naphthyridinone and one hydroxyisoquinolinedione as potent inhibitors of HIV-1 and XMRV RT RNases H with 50% inhibitory concentrations ranging from approximately 0.8 to 0.02 muM. Two acylhydrazones effective against HIV-1 RT RNase H were less potent against the XMRV enzyme. We also solved the crystal structure of an XMRV RNase H fragment at high resolution (1.5 A) and determined the molecular details of the XMRV RNase H active site, thus providing a framework that would be useful for the design of antivirals that target RNase H.
PDB ID: 3P1GDownload
MMDB ID: 85542
PDB Deposition Date: 2010/9/30
Updated in MMDB: 2010/10 
Experimental Method:
x-ray diffraction
Resolution: 1.5  Å
Source Organism:
Similar Structures:
Biological Unit: monomeric; determined by author, and by software (PISA)
Molecular Components
Label Count Molecule
Protein (1 molecule)
1
Xenotropic Murine Leukemia Virus-related Virus (Xmrv) Rnase H Domain
Molecule annotation
Chemical (1 molecule)
1
1
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.