3HR0: Crystal structure of Homo sapiens Conserved Oligomeric Golgi subunit 4

Citation:
Abstract
The proper glycosylation of proteins trafficking through the Golgi apparatus depends upon the conserved oligomeric Golgi (COG) complex. Defects in COG can cause fatal congenital disorders of glycosylation (CDGs) in humans. The recent discovery of a form of CDG, caused in part by a COG4 missense mutation changing Arg 729 to Trp, prompted us to determine the 1.9 A crystal structure of a Cog4 C-terminal fragment. Arg 729 is found to occupy a key position at the center of a salt bridge network, thereby stabilizing Cog4's small C-terminal domain. Studies in HeLa cells reveal that this C-terminal domain, while not needed for the incorporation of Cog4 into COG complexes, is essential for the proper glycosylation of cell surface proteins. We also find that Cog4 bears a strong structural resemblance to exocyst and Dsl1p complex subunits. These complexes and others have been proposed to function by mediating the initial tethering between transport vesicles and their membrane targets; the emerging structural similarities provide strong evidence of a common evolutionary origin and may reflect shared mechanisms of action.
PDB ID: 3HR0Download
MMDB ID: 75489
PDB Deposition Date: 2009/6/8
Updated in MMDB: 2017/11
Experimental Method:
x-ray diffraction
Resolution: 1.9  Å
Source Organism:
Similar Structures:
Biological Unit for 3HR0: dimeric; determined by software (PISA)
Molecular Components in 3HR0
Label Count Molecule
Proteins (2 molecules)
2
Cog4(Gene symbol: COG4)
Molecule annotation
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.