3HJ8: Crystal structure determination of catechol 1,2-dioxygenase from rhodococcus opacus 1CP in complex with 4-chlorocatechol

Citation:
Abstract
The first crystallographic structures of a catechol 1,2-dioxygenase from a Gram-positive bacterium Rhodococcus opacus 1CP (Rho 1,2-CTD), a Fe(III) ion containing enzyme specialized in the aerobic biodegradation of catechols, and its adducts with catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol (benzene-1,2,3-triol), 3-chlorocatechol, 4-chlorocatechol, 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate (3,4-dihydroxybenzoate) have been determined and analyzed. This study represents the first extensive characterization of catechols adducts of 1,2-CTDs. The structural analyses reveal the diverse modes of binding to the active metal iron ion of the tested catechols thus allowing to identify the residues selectively involved in recognition of the diverse substrates by this class of enzymes. The comparison is further extended to the structural and functional characteristics of the other 1,2-CTDs isolated from Gram-positive and Gram-negative bacteria. Moreover the high structural homology of the present enzyme with the 3-chlorocatechol 1,2-dioxygenase from the same bacterium are discussed in terms of their different substrate specificity. The catalytic rates for Rho 1,2-CTD conversion of the tested compounds are also compared with the calculated energies of the highest occupied molecular orbital (E(HOMO)) of the substrates. A quantitative relationship (R=0.966) between the ln k(cat) and the calculated electronic parameter E(HOMO) was obtained for catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol, 3-chlorocatechol, 4-chlorocatechol. This indicates that for these substrates the rate-limiting step of the reaction cycle is dependent on their nucleophilic reactivity. The discrepancies observed in the quantitative relationship for 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate are ascribed to the sterical hindrances leading to the distorted binding of such catechols observed in the corresponding structures.
PDB ID: 3HJ8Download
MMDB ID: 79236
PDB Deposition Date: 2009/5/21
Updated in MMDB: 2017/11
Experimental Method:
x-ray diffraction
Resolution: 2.4  Å
Source Organism:
Similar Structures:
Biological Unit for 3HJ8: dimeric; determined by author and by software (PISA)
Molecular Components in 3HJ8
Label Count Molecule
Proteins (2 molecules)
2
Catechol 1,2-dioxygenase
Molecule annotation
Chemicals (6 molecules)
1
2
2
2
3
2
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.