2MH2: Structural insights into the DNA recognition and protein interaction domains reveal fundamental homologous DNA pairing properties of HOP2

Citation:
Abstract
The HOP2 protein is required for efficient double-strand break repair which ensures the proper synapsis of homologous chromosomes and normal meiotic progression. We previously showed that in vitro HOP2 shows two distinctive activities: when it is incorporated into a HOP2-MND1 heterodimer, it stimulates DMC1 and RAD51 recombination activities, and the purified HOP2 alone is proficient in promoting strand invasion. The structural and biochemical basis of HOP2 action in recombination are poorly understood; therefore, they are the focus of this work. Herein, we present the solution structure of the amino-terminal portion of mouse HOP2, which contains a typical winged helix DNA-binding domain. Together with NMR spectral changes in the presence of double-stranded DNA, protein docking on DNA, and mutation analysis to identify the amino acids involved in DNA coordination, our results on the three-dimensional structure of HOP2 provide key information on the fundamental structural and biochemical requirements directing the interaction of HOP2 with DNA. These results, in combination with mutational experiments showing the role of a coiled-coil structural feature involved in HOP2 self-association, allow us to explain important aspects of the function of HOP2 in recombination.
PDB ID: 2MH2Download
MMDB ID: 119109
PDB Deposition Date: 2013/11/13
Updated in MMDB: 2014/08
Experimental Method:
solution nmr
Source Organism:
Similar Structures:
Biological Unit for 2MH2: monomeric; determined by author
Molecular Components in 2MH2
Label Count Molecule
Protein (1 molecule)
1
Homologous-pairing Protein 2 Homolog(Gene symbol: Psmc3ip)
Molecule annotation
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.