2GW6: NMR structure of the human tRNA endonuclease SEN15 subunit

Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease.
PDB ID: 2GW6Download
MMDB ID: 39474
PDB Deposition Date: 2006/5/3
Updated in MMDB: 2007/11
Experimental Method:
solution nmr
Source Organism:
Similar Structures:
Molecular Components in 2GW6
Label Count Molecule
Proteins (2 molecules)
tRNA-splicing Endonuclease Subunit Sen15(Gene symbol: TSEN15)
Molecule annotation
* Click molecule labels to explore molecular sequence information.

Citing MMDB