1JSH: Crystal Structure Of H9 Haemagglutinin Complexed With Lsta Receptor Analog

The three-dimensional structures of avian H5 and swine H9 influenza hemagglutinins (HAs) from viruses closely related to those that caused outbreaks of human disease in Hong Kong in 1997 and 1999 were determined bound to avian and human cell receptor analogs. Emerging influenza pandemics have been accompanied by the evolution of receptor-binding specificity from the preference of avian viruses for sialic acid receptors in alpha2,3 linkage to the preference of human viruses for alpha2,6 linkages. The four new structures show that HA binding sites specific for human receptors appear to be wider than those preferring avian receptors and how avian and human receptors are distinguished by atomic contacts at the glycosidic linkage. alpha2,3-Linked sialosides bind the avian HA in a trans conformation to form an alpha2,3 linkage-specific motif, made by the glycosidic oxygen and 4-OH of the penultimate galactose, that is complementary to the hydrogen-bonding capacity of Gln-226, an avian-specific residue. alpha2,6-Linked sialosides bind in a cis conformation, exposing the glycosidic oxygen to solution and nonpolar atoms of the receptor to Leu-226, a human-specific residue. The new structures are compared with previously reported crystal structures of HA/sialoside complexes of the H3 subtype that caused the 1968 Hong Kong Influenza virus pandemic and analyzed in relation to HA sequences of all 15 subtypes and to receptor affinity data to make clearer how receptor-binding sites of HAs from avian viruses evolve as the virus adapts to humans.
PDB ID: 1JSHDownload
MMDB ID: 17245
PDB Deposition Date: 2001/8/17
Updated in MMDB: 2007/10
Experimental Method:
x-ray diffraction
Resolution: 2.4  Å
Source Organism:
Similar Structures:
Biological Unit for 1JSH: dimeric; determined by author and by software (PISA)
Molecular Components in 1JSH
Label Count Molecule
Proteins (2 molecules)
Haemagglutinin (Ha1 Chain)
Molecule annotation
Haemagglutinin (Ha2 Chain)
Molecule annotation
Chemicals (12 molecules)
* Click molecule labels to explore molecular sequence information.

Citing MMDB