1GZZ: Human Insulin-Like Growth Factor; Hamburg Data

Human insulin-like growth factors I and II (hIGF-I, hIGF-II) are potent stimulators of cell and growth processes. They display high sequence similarity to both the A and B chains of insulin but contain an additional connecting C-domain, which reflects their secretion without specific packaging or precursor conversion. IGFs also have an extension at the C-terminus known as the D-domain. This paper describes four homologous hIGF-1 structures, obtained from crystals grown in the presence of the detergent SB12, which reveal additional detail in the C- and D-domains. Two different detergent binding modes observed in the crystals may reflect different hIGF-I biological properties such as the interaction with IGF binding proteins and self-aggregation. While the helical core of hIGF-I is very similar to that in insulin, there are distinct differences in the region of hIGF-I corresponding to the insulin B chain C-terminus, residues B25-B30. In hIGF-I, these residues (24-29) and the following C-domain form an extensive loop protruding 20 A from the core, which results in a substantially different conformation for the receptor binding epitope in hIGF-I compared to insulin. One notable feature of the structures presented here is demonstration of peptide-bond cleavage between Ser35 and Arg36 resulting in an apparent gap between residues 35 and 39. The equivalent region of proinsulin is involved in hormone processing demanding a reassessment of the structural integrity of hIGF-I in relation to its biological function.
PDB ID: 1GZZDownload
MMDB ID: 20050
PDB Deposition Date: 2002/6/10
Updated in MMDB: 2012/11
Experimental Method:
x-ray diffraction
Resolution: 2.3  Å
Source Organism:
Similar Structures:
Biological Unit for 1GZZ: monomeric; determined by author and by software (PQS)
Molecular Components in 1GZZ
Label Count Molecule
Protein (1 molecule)
Insulin-like Growth Factor I
Molecule annotation
Chemical (1 molecule)
* Click molecule labels to explore molecular sequence information.

Citing MMDB