1EC3: HIV-1 protease in complex with the inhibitor MSA367

Citation:
Abstract
HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.
PDB ID: 1EC3Download
MMDB ID: 19728
PDB Deposition Date: 2000/1/25
Updated in MMDB: 2007/10
Experimental Method:
x-ray diffraction
Resolution: 1.8  Å
Source Organism:
Similar Structures:
Biological Unit for 1EC3: dimeric; determined by author and by software (PISA)
Molecular Components in 1EC3
Label Count Molecule
Proteins (2 molecules)
2
Hiv-1 Protease
Molecule annotation
Chemical (1 molecule)
1
1
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.