1DV7: Crystal Structure Of Orotidine Monophosphate Decarboxylase

Citation:
Abstract
Orotidine 5'-monophosphate decarboxylase catalyzes the conversion of orotidine 5'-monophosphate to uridine 5'-monophosphate, the last step in biosynthesis of pyrimidine nucleotides. As part of a Structural Genomics Initiative, the crystal structures of the ligand-free and the6-azauridine 5'-monophosphate-complexed forms have been determined at 1.8 and 1.5 A, respectively. The protein assumes a TIM-barrel fold with one side of the barrel closed off and the other side binding the inhibitor. A unique array of alternating charges (Lys-Asp-Lys-Asp) in the active site prompted us to apply quantum mechanical and molecular dynamics calculations to analyze the relative contributions of ground state destabilization and transition state stabilization to catalysis. The remarkable catalytic power of orotidine 5'-monophosphate decarboxylase is almost exclusively achieved via destabilization of the reactive part of the substrate, which is compensated for by strong binding of the phosphate and ribose groups. The computational results are consistent with a catalytic mechanism that is characterized by Jencks's Circe effect.
PDB ID: 1DV7Download
MMDB ID: 12857
PDB Deposition Date: 2000/1/20
Updated in MMDB: 2007/10
Experimental Method:
x-ray diffraction
Resolution: 1.8  Å
Source Organism:
Similar Structures:
Biological Unit for 1DV7: dimeric; determined by author
Molecular Components in 1DV7
Label Count Molecule
Proteins (2 molecules)
2
Orotidine 5'-phosphate Decarboxylase(Gene symbol: MTH_RS00570)
Molecule annotation
* Click molecule labels to explore molecular sequence information.

Citing MMDB
.