NCBI Home Page NCBI Site Search page NCBI Guide that lists and describes the NCBI resources
Conserved domains on  [gi|24797065|ref|NP_036388|]
View 

zinc finger protein 212 [Homo sapiens]

Protein Classification

Graphical summary

 Zoom to residue level

show extra options »

Show site features     Horizontal zoom: ×

List of domain hits

Name Accession Description Interval E-value
KRAB_A-box cd07765
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
142-180 4.58e-14

KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.


:

Pssm-ID: 143639  Cd Length: 40  Bit Score: 66.03  E-value: 4.58e-14
                        10        20        30
                ....*....|....*....|....*....|....*....
gi 24797065 142 SLENDGVCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:cd07765   2 TFEDVAVYFSQEEWELLDPAQRDLYRDVMLENYENLVSL 40
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
429-449 3.51e-05

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


:

Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 40.36  E-value: 3.51e-05
                          10        20
                  ....*....|....*....|.
gi 24797065   429 CGYCGKSFSHPSDLVRHQRIH 449
Cdd:pfam00096   3 CPDCGKSFSRKSNLKRHLRTH 23
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
455-477 3.06e-04

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


:

Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 37.66  E-value: 3.06e-04
                          10        20
                  ....*....|....*....|...
gi 24797065   455 YSCTECEKSFVQKQHLLQHQKIH 477
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
316-338 2.64e-03

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


:

Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 35.35  E-value: 2.64e-03
                          10        20
                  ....*....|....*....|...
gi 24797065   316 YECSECEITFRYKQQLATHLRSH 338
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
 
Name Accession Description Interval E-value
KRAB_A-box cd07765
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
142-180 4.58e-14

KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.


Pssm-ID: 143639  Cd Length: 40  Bit Score: 66.03  E-value: 4.58e-14
                        10        20        30
                ....*....|....*....|....*....|....*....
gi 24797065 142 SLENDGVCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:cd07765   2 TFEDVAVYFSQEEWELLDPAQRDLYRDVMLENYENLVSL 40
KRAB pfam01352
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ...
148-180 5.57e-12

KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation.


Pssm-ID: 426216  Cd Length: 42  Bit Score: 60.14  E-value: 5.57e-12
                          10        20        30
                  ....*....|....*....|....*....|...
gi 24797065   148 VCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:pfam01352   9 VDFTQEEWALLDPAQRNLYRDVMLENYRNLVSL 41
KRAB smart00349
krueppel associated box;
148-180 6.79e-11

krueppel associated box;


Pssm-ID: 214630 [Multi-domain]  Cd Length: 61  Bit Score: 57.60  E-value: 6.79e-11
                           10        20        30
                   ....*....|....*....|....*....|...
gi 24797065    148 VCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:smart00349   8 VYFTQEEWEQLDPAQKNLYRDVMLENYSNLVSL 40
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
429-449 3.51e-05

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 40.36  E-value: 3.51e-05
                          10        20
                  ....*....|....*....|.
gi 24797065   429 CGYCGKSFSHPSDLVRHQRIH 449
Cdd:pfam00096   3 CPDCGKSFSRKSNLKRHLRTH 23
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
455-477 3.06e-04

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 37.66  E-value: 3.06e-04
                          10        20
                  ....*....|....*....|...
gi 24797065   455 YSCTECEKSFVQKQHLLQHQKIH 477
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
COG5048 COG5048
FOG: Zn-finger [General function prediction only];
419-477 3.20e-04

FOG: Zn-finger [General function prediction only];


Pssm-ID: 227381 [Multi-domain]  Cd Length: 467  Bit Score: 43.15  E-value: 3.20e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 24797065 419 PWRKSRSSLICGYCGKSFSHPSDLVRHQR--IHTGE--RPYSCTE--CEKSFVQKQHLLQHQKIH 477
Cdd:COG5048 282 SEKGFSLPIKSKQCNISFSRSSPLTRHLRsvNHSGEslKPFSCPYslCGKLFSRNDALKRHILLH 346
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
316-338 2.64e-03

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 35.35  E-value: 2.64e-03
                          10        20
                  ....*....|....*....|...
gi 24797065   316 YECSECEITFRYKQQLATHLRSH 338
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
ZnF_C2H2 smart00355
zinc finger;
455-477 7.01e-03

zinc finger;


Pssm-ID: 197676  Cd Length: 23  Bit Score: 33.98  E-value: 7.01e-03
                           10        20
                   ....*....|....*....|...
gi 24797065    455 YSCTECEKSFVQKQHLLQHQKIH 477
Cdd:smart00355   1 YRCPECGKVFKSKSALREHMRTH 23
ZnF_C2H2 smart00355
zinc finger;
427-449 8.61e-03

zinc finger;


Pssm-ID: 197676  Cd Length: 23  Bit Score: 33.59  E-value: 8.61e-03
                           10        20
                   ....*....|....*....|...
gi 24797065    427 LICGYCGKSFSHPSDLVRHQRIH 449
Cdd:smart00355   1 YRCPECGKVFKSKSALREHMRTH 23
 
Name Accession Description Interval E-value
KRAB_A-box cd07765
KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression ...
142-180 4.58e-14

KRAB (Kruppel-associated box) domain -A box; The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods. These proteins have been shown to play important roles in cell differentiation and organ development, and in regulating viral replication and transcription. A KRAB domain may consist of an A-box, or of an A-box plus either a B-box, a divergent B-box (b), or a C-box. Only the A-box is included in this model. The A-box is needed for repression, the B- and C- boxes are not. KRAB-ZFPs have one or two KRAB domains at their amino-terminal end, and multiple C2H2 zinc finger motifs at their C-termini. Some KRAB-ZFPs also contain a SCAN domain which mediates homo- and hetero-oligomerization. The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. A key mechanism appears to be the following: KRAB-AFPs tethered to DNA recruit, via their KRAB domain, the repressor KAP1 (KRAB-associated protein-1, also known as transcription intermediary factor 1 beta , KRAB-A interacting protein , and tripartite motif protein 28). The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.


Pssm-ID: 143639  Cd Length: 40  Bit Score: 66.03  E-value: 4.58e-14
                        10        20        30
                ....*....|....*....|....*....|....*....
gi 24797065 142 SLENDGVCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:cd07765   2 TFEDVAVYFSQEEWELLDPAQRDLYRDVMLENYENLVSL 40
KRAB pfam01352
KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc ...
148-180 5.57e-12

KRAB box; The KRAB domain (or Kruppel-associated box) is present in about a third of zinc finger proteins containing C2H2 fingers. The KRAB domain is found to be involved in protein-protein interactions. The KRAB domain is generally encoded by two exons. The regions coded by the two exons are known as KRAB-A and KRAB-B. The A box plays an important role in repression by binding to corepressors, while the B box is thought to enhance this repression brought about by the A box. KRAB-containing proteins are thought to have critical functions in cell proliferation and differentiation, apoptosis and neoplastic transformation.


Pssm-ID: 426216  Cd Length: 42  Bit Score: 60.14  E-value: 5.57e-12
                          10        20        30
                  ....*....|....*....|....*....|...
gi 24797065   148 VCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:pfam01352   9 VDFTQEEWALLDPAQRNLYRDVMLENYRNLVSL 41
KRAB smart00349
krueppel associated box;
148-180 6.79e-11

krueppel associated box;


Pssm-ID: 214630 [Multi-domain]  Cd Length: 61  Bit Score: 57.60  E-value: 6.79e-11
                           10        20        30
                   ....*....|....*....|....*....|...
gi 24797065    148 VCFTEQEWENLEDWQKELYRNVMESNYETLVSL 180
Cdd:smart00349   8 VYFTQEEWEQLDPAQKNLYRDVMLENYSNLVSL 40
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
429-449 3.51e-05

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 40.36  E-value: 3.51e-05
                          10        20
                  ....*....|....*....|.
gi 24797065   429 CGYCGKSFSHPSDLVRHQRIH 449
Cdd:pfam00096   3 CPDCGKSFSRKSNLKRHLRTH 23
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
455-477 3.06e-04

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 37.66  E-value: 3.06e-04
                          10        20
                  ....*....|....*....|...
gi 24797065   455 YSCTECEKSFVQKQHLLQHQKIH 477
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
COG5048 COG5048
FOG: Zn-finger [General function prediction only];
419-477 3.20e-04

FOG: Zn-finger [General function prediction only];


Pssm-ID: 227381 [Multi-domain]  Cd Length: 467  Bit Score: 43.15  E-value: 3.20e-04
                        10        20        30        40        50        60
                ....*....|....*....|....*....|....*....|....*....|....*....|....*
gi 24797065 419 PWRKSRSSLICGYCGKSFSHPSDLVRHQR--IHTGE--RPYSCTE--CEKSFVQKQHLLQHQKIH 477
Cdd:COG5048 282 SEKGFSLPIKSKQCNISFSRSSPLTRHLRsvNHSGEslKPFSCPYslCGKLFSRNDALKRHILLH 346
zf-C2H2 pfam00096
Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two ...
316-338 2.64e-03

Zinc finger, C2H2 type; The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter.


Pssm-ID: 395048 [Multi-domain]  Cd Length: 23  Bit Score: 35.35  E-value: 2.64e-03
                          10        20
                  ....*....|....*....|...
gi 24797065   316 YECSECEITFRYKQQLATHLRSH 338
Cdd:pfam00096   1 YKCPDCGKSFSRKSNLKRHLRTH 23
ZnF_C2H2 smart00355
zinc finger;
455-477 7.01e-03

zinc finger;


Pssm-ID: 197676  Cd Length: 23  Bit Score: 33.98  E-value: 7.01e-03
                           10        20
                   ....*....|....*....|...
gi 24797065    455 YSCTECEKSFVQKQHLLQHQKIH 477
Cdd:smart00355   1 YRCPECGKVFKSKSALREHMRTH 23
ZnF_C2H2 smart00355
zinc finger;
427-449 8.61e-03

zinc finger;


Pssm-ID: 197676  Cd Length: 23  Bit Score: 33.59  E-value: 8.61e-03
                           10        20
                   ....*....|....*....|...
gi 24797065    427 LICGYCGKSFSHPSDLVRHQRIH 449
Cdd:smart00355   1 YRCPECGKVFKSKSALREHMRTH 23
COG5048 COG5048
FOG: Zn-finger [General function prediction only];
429-480 8.83e-03

FOG: Zn-finger [General function prediction only];


Pssm-ID: 227381 [Multi-domain]  Cd Length: 467  Bit Score: 38.52  E-value: 8.83e-03
                        10        20        30        40        50
                ....*....|....*....|....*....|....*....|....*....|....*...
gi 24797065 429 CGYCGKSFSHPSDLVRHQRIHTGERPYSCT--ECEKSFV----QKQHLLQHQKIHQRE 480
Cdd:COG5048  36 CPNCTDSFSRLEHLTRHIRSHTGEKPSQCSysGCDKSFSrpleLSRHLRTHHNNPSDL 93
 
Blast search parameters
Data Source: Precalculated data, version = cdd.v.3.20
Preset Options:Database: CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   E-value threshold: 0.01

References:

  • Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
  • Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
  • Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
Help | Disclaimer | Write to the Help Desk
NCBI | NLM | NIH