?
cytochrome P450 family 82 Cytochrome P450 family 82 (CYP82 or Cyp82) genes specifically reside in dicots and are usually induced by distinct environmental stresses. Characterized members include: Glycine max CYP82A3 that is induced by infection, salinity and drought stresses, and is involved in the jasmonic acid and ethylene signaling pathway, enhancing plant resistance; Arabidopsis thaliana CYP82G1 that catalyzes the breakdown of the C(20)-precursor (E,E)-geranyllinalool to the insect-induced C(16)-homoterpene (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT); and Papaver somniferum CYP82N4, also called methyltetrahydroprotoberberine 14-monooxygenase, and CYP82Y1, also called N-methylcanadine 1-hydroxylase. CYP82N4 catalyzes the conversion of N-methylated protoberberine alkaloids N-methylstylopine and N-methylcanadine into protopine and allocryptopine, respectively, in the biosynthesis of isoquinoline alkaloid sanguinarine. CYP82Y1 catalyzes the 1-hydroxylation of N-methylcanadine to 1-hydroxy-N-methylcanadine, the first committed step in the formation of noscapine. CYP82 belongs to the large cytochrome P450 (P450, CYP) superfamily of heme-containing proteins that catalyze a variety of oxidative reactions of a large number of structurally different endogenous and exogenous compounds in organisms from all major domains of life. CYPs bind their diverse ligands in a buried, hydrophobic active site, which is accessed through a substrate access channel formed by two flexible helices and their connecting loop.
|