?
PHD finger 1 found in nuclear receptor-binding SET domain-containing protein NSD1 and NSD2 NSD1, also termed H3 Lysine-36 and H4 Lysine-20 specific histone-lysine N-methyltransferase, or androgen receptor coactivator 267 kDa protein, or androgen receptor-associated protein of 267 kDa, or H3-K36-HMTase H4-K20-HMTase, or Lysine N-methyltransferase 3B (KMT3B), or NR-binding SET domain-containing protein, is a lysine methyltransferase that preferentially methylates H3 on Lysine36 (H3-K36) and H4 on Lysine20 (H4-K20), which is primarily associated with active transcription. It plays a role in several pathologies, including but not limited to Sotos and Weaver syndromes, acute myeloid leukemia, breast cancer, neuroblastoma, and glioblastoma formation. It can alter transcription by interacting with the protein NSD1-interacting zinc finger protein 1 (NIZP1). It also mitigates caspase-1 activation by listeriolysin o (LLO) in macrophages, and requires functional LLO for the regulation of IL-1beta secretion. Moreover, NSD1 regulates RNA polymerase II (RNAP II) recruitment to bone morphogenetic protein 4 (BMP4). NSD2, also termed histone-lysine N-methyltransferase NSD2, or multiple myeloma SET domain-containing protein (MMSET), or protein trithorax-5 Wolf-Hirschhorn syndrome candidate 1 protein (WHSC1), is overexpressed frequently in the t(4;14) translocation in 15% to 20% of multiple myeloma. It plays important roles in cancer cell proliferation, survival, and tumor growth, by mediating constitutive NF-kappaB signaling via the cytokine autocrine loop. It also enhances androgen receptor (AR)-mediated transcription. The principal chromatin-regulatory activity of NSD2 is dimethylation of histone H3 at lysine 36 (H3K36me2). Both NSD1 and NSD2 contain a catalytic suppressor of variegation, enhancer of zeste and trithorax (SET) domain, two proline-tryptophan-tryptophan-proline (PWWP) domains, five plant homeodomain (PHD) fingers, and an NSD-specific Cys-His rich domain (Cys5HisCysHis). In addition, NSD2 harbors a high mobility group (HMG) box. The SET domain is responsible for histone methyltransferase activity. The PWWP, HMG, and PHD fingers mediate chromatin interaction and recognition of histone marks. This model corresponds to the first PHD finger.
|