The phosphoinositide binding Phox Homology domain of Sorting Nexin 13
The PX domain is a phosphoinositide (PI) binding module present in many proteins with diverse functions. Sorting nexins (SNXs) make up the largest group among PX domain containing proteins. They are involved in regulating membrane traffic and protein sorting in the endosomal system. The PX domain of SNXs binds PIs and targets the protein to PI-enriched membranes. SNXs differ from each other in PI-binding specificity and affinity, and the presence of other protein-protein interaction domains, which help determine subcellular localization and specific function in the endocytic pathway. SNX13, also called RGS-PX1, contains an N-terminal PXA domain, a regulator of G protein signaling (RGS) domain, a PX domain, and a C-terminal domain that is conserved in some SNXs. It specifically binds to the stimulatory subunit of the heterotrimeric G protein G(alpha)s, serving as its GTPase activating protein, through the RGS domain. It preferentially binds phosphatidylinositol-3-phosphate (PI3P) through the PX domain and is localized in early endosomes. SNX13 is involved in endosomal sorting of EGFR into multivesicular bodies (MVB) for delivery to the lysosome.
Feature 1:phosphoinositide binding site [chemical binding site]
Evidence:
Comment:A majority of PX domain containing proteins binds phosphatidylinositol-3-phosphate (PI3P) at this site. In some cases, other phosphoinositides, such as PI4P or PI(3,4)P2, are the preferred substrates.
Comment:based on the structures of phosphatidylinositol-3-phosphate bound to other members of this superfamily
Comment:Two basic residues are key in binding with phosphoinositides: one forms hydrogen bonds with the 3-phosphate of PI(3)P and another forms hydrogen bonds with the 4-and 5-hydroxyl groups of PI(3)P.