
13: Data Serialization (ASN.1, XML)
Last Update: October 10, 2012.

The SERIAL API [Library xserial:include | src]
The overview for this chapter consists of the following topics:

• Introduction
• Chapter Outline

Introduction

The Serial library provides a means for loading, accessing, manipulating, and serialization of data
in a formatted way. It supports serialization in ASN.1 (text or BER encoding), XML, and
JSON formats. See also the DATATOOL documentation discussion of generating C++ code for
serializable objects from the corresponding ASN.1 definition.

The structure of data is described by some sort of formal language. In our case it can be ASN.1,
DTD or XML Schema. Based on such specification, DATATOOL application, which is part of
NCBI C++ toolkit, generates a collection of data storage classes that can be used to store and
serialize data. The design purpose was to make these classes as lightweight as possible, moving
all details of serialization into specialized classes - “object streams”. Structure of the data is
described with the help of “type information”. Data objects contain data and type information
only. Any such data storage object can be viewed as a node tree that provides random access to
its data. The Serial library provides a means of traversing this data tree without knowing its
structure in advance – using only type information; C++ code generated by DATATOOL makes
it possible to access any child node directly.

“Object streams” are intermediaries between data storage objects and input or output stream. They
perform encoding or decoding of data according to format specifications. Guided by the type
information embedded into data object, on reading they allocate memory when needed, fill in
data, and validate that all mandatory data is present; on writing they guarantee that all relevant
data is written and that the resulting document is well-formed. All it takes to read or write a top-
level data object is one function call – all the details are handled by an object stream.

Closely related to serialization is the task of converting data from one format into another. One
approach could be reading data object completely into memory and then writing it in another
format. The only problem is that the size of data can be huge. To simplify this task and to avoid
storing data in memory, the serial library provides the “object stream copier” class. It reads data
by small chunks and writes it immediately after reading. In addition to small memory footprint,
it also works much faster.

Input data can be very large in size; also, reading it completely into memory could not be the goal
of processing. Having a large file of data, one might want to investigate information containers
only of a particular type. Serial library provides a variety of means for doing this. The list includes
read and write hooks, several types of stream iterators, and filter templates. It is worth to note
that, when using read hooks to read child nodes, one might end up with an invalid top-level data
object; or, when using write hooks, one might begin with an invalid object and fill in missing data
on the fly – in hooks.

In essence, “hook” is a callback function that client application provides to serial library. Client
application installs the hook, then reads (or writes) data object, and somewhere from the depths
of serialization processing, the library calls this hook function at appropriate times, for example,
when a data chunk of specified type is about to be read. It is also possible to install context-specific

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.w3.org/XML
http://json.org
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app

hooks. Such hooks are triggered when serializing a particular object type in a particular structural
context; for example, for all objects of class A which are contained in object B.

Chapter Outline

The following is an outline of the topics presented in this chapter:

• CObject[IO]Streams
– Format Specific Streams: The CObject[IO]Stream classes
– The CObjectIStream (*) classes
– The CObjectOStream (*) classes
– The CObjectStreamCopier (*) classes
– Type-specific I/O routines – the hook classes

♦ Hook Sample
♦ Read mode hooks
♦ Write mode hooks
♦ Copy mode hooks
♦ Skip mode hooks
♦ The CObjectHookGuard class
♦ Stack Path Hooks

– The ByteBlock and CharBlock classes
– NCBI C++ Toolkit Network Service (RPC) Clients

♦ Introduction and Use
♦ Implementation Details

– Verification of Class Member Initialization
♦ Initialization Verification in CSerialObject Classes
♦ Initialization Verification in Object Streams

– Simplified serialization interface
– Finding in input stream objects of a specific type

• The NCBI C++ Toolkit Iterators
– STL generic iterators
– CTypeIterator (*) and CTypeConstIterator (*)
– Class hierarchies, embedded objects, and the NCBI C++ type iterators
– CObjectIterator (*) and CObjectConstIterator (*)
– CStdTypeIterator (*) and CStdTypeConstIterator (*)
– CTypesIterator (*)
– Context Filtering in Type Iterators
– Additional Information

• Processing Serial Data
– Accessing the object header files and serialization libraries
– Reading and writing serial data

Page 2

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

– Reading and writing binary JSON data
– Determining Which Header Files to Include
– Determining Which Libraries to Link To

• User-defined type information
– Introduction
– Installing a GetTypeInfo() function: the BEGIN_/END_ macros

♦ List of the BEGIN_/END_ macros
– Specifying internal structure and class inheritance: the ADD_ macros

• Runtime Object Type Information
– Introduction

♦ Type and Object specific info
– Motivation
– Object Information Classes
– CObjectTypeInfo (*)
– CConstObjectInfo (*)
– CObjectInfo (*)
– Usage of object type information

• Choice objects in the NCBI C++ Toolkit
– Introduction
– C++ choice objects

• Traversing a Data Structure
– Locating the Class Definitions
– Accessing and Referencing Data Members
– Traversing a Biostruc
– Iterating Over Containers

• SOAP support
– SOAP message
– SOAP client - CSoapHttpClient
– SOAP server - CSoapServerApplication
– Sample SOAP server and client

♦ Sample server
♦ Sample client

• Test Cases [src/serial/test]

CObject[IO]Streams
The following topics are discussed in this section:

• Format Specific Streams: The CObject[IO]Stream classes
• The CObjectIStream (*) classes
• The CObjectOStream (*) classes
• The CObjectStreamCopier (*) classes

Page 3

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

• Type-specific I/O routines – the hook classes
– Hook Sample
– Read mode hooks
– Write mode hooks
– Copy mode hooks
– Skip mode hooks

• The CObjectHookGuard class
• Stack Path Hooks
• The ByteBlock and CharBlock classes
• NCBI C++ Toolkit Network Service Clients
• Verification of Class Member Initialization
• Simplified serialization interface
• Finding in input stream objects of a specific type

Format Specific Streams: The CObject[IO]Stream classes
The reading and writing of serialized data objects entails satisfying two independent sets of
constraints and specifications: (1) format-specific parsing and encoding schemes, and (2)
object-specific internal structures and rules of composition. The NCBI C++ Toolkit
implements serial IO processes by combining a set of object stream classes with an
independently defined set of data object classes. These classes are implemented in the serial
and objects directories respectively.

The base classes for the object stream classes are CObjectIStream and CObjectOStream. Each
of these base classes has derived subclasses which specialize in different formats, including
XML, binary ASN.1, and text ASN.1. A simple example program, xml2asn.cpp (see Code
Sample 1), described in Processing serial data, uses these object stream classes in conjunction
with a CBiostruct object to translate a file from XML encoding to ASN.1 formats. In this
chapter, we consider in more detail the class definitions for object streams, and how the type
information associated with the data is used to implement serial input and output.

Each object stream specializes in a serial data format and a direction (in/out). It is not until the
input and output operators are applied to these streams, in conjunction with a specified
serializable object, that the object-specific type information comes into play. For example, if
instr is a CObjectIStream, the statement: instr >> myObject invokes a Read() method associated
with the input stream, whose sole argument is a CObjectInfo for myObject.

Similarly, the output operators, when applied to a CObjectOstream in conjunction with a
serializable object, will invoke a Write() method on the output stream which accesses the
object's type information. The object's type information defines what tag names and value types
should be encountered on the stream, while the CObject[IO]Stream subclasses specialize the
data serialization format.

The input and output operators (<< and >>) are declared in serial/serial.hpp header.

The CObjectIStream (*) classes
CObjectIStream is a virtual base class for the CObjectIStreamXml, CObjectIStreamAsn, and
CObjectIStreamAsnBinary classes. As such, it has no public constructors, and its user interface
includes the following methods:

Page 4

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serial.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsnBinary.html

• Open()
• Close()
• GetDataFormat()
• ReadFileHeader()
• Read()
• ReadObject()
• ReadSeparateObject()
• Skip()
• SkipObject()

There are several Open() methods; most of these are static class methods that return a pointer
to a newly created CObjectIStream. Typically, these methods are used with an auto_ptr, as in:

auto_ptr<CObjectIStream> xml_in(CObjectIStream::Open(filename, eSerial_Xml));

Here, an XML format is specified by the enumerated value eSerial_Xml, defined in
ESerialDataFormat. Because these methods are static, they can be used to create a new instance
of a CObjectIStream subclass, and open it with one statement. In this example, a
CObjectIStreamXml is created and opened on the file filename.

An additional non-static Open() method is provided, which can only be invoked as a member
function of a previously instantiated object stream (whose format type is of course, implicit to
its class). This method takes a CNcbiIstream and a flag indicating whether or not ownership
of the CNcbiIstream should be transferred (so that it can be deleted automatically when the
object stream is closed):

void Open(CNcbiIstream& inStream, EOwnership deleteInStream = eNoOwnership);

The next three methods have the following definitions. Close() closes the stream.
GetDataFormat() returns the enumerated ESerialDataFormat for the stream. ReadFileHeader
() reads the first line from the file, and returns it in a string. This might be used for example,
in the following context:

auto_ptr<CObjectIStream> in(CObjectIStream::Open(fname, eSerial_AsnText));
string type = in.ReadFileHeader();
if (type.compare("Seq-entry") == 0) {
 CSeq_entry seqent;
 in->Read(ObjectInfo(seqent), eNoFileHeader);
 // ...
}
else if (type.compare("Bioseq-set") == 0) {
 CBioseq_set seqset;
 in->Read(ObjectInfo(seqset), eNoFileHeader);
 // ...
}

The ReadFileHeader() method for the base CObjectIStream class returns an empty
string. Only those stream classes which specialize in ASN.1 text or XML formats
have actual implementations for this method.

Page 5

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html

Several Read*() methods are provided for usage in different contexts. CObjectIStream::Read
() should be used for reading a top-level "root" object from a data file. For convenience, the
input operator >>, as described above, indirectly invokes this method on the input stream, using
a CObjectTypeInfo object derived from myObject. By default, the Read() method first calls
ReadFileHeader(), and then calls ReadObject(). Accordingly, calls to Read() which follow the
usage of ReadFileHeader()must include the optional eNoFileHeader argument.

Most data objects also contain embedded objects, and the default behavior of Read() is to load
the top-level object, along with all of its contained subobjects into memory. In some cases this
may require significant memory allocation, and it may be only the top-level object which is
needed by the application. The next two methods, ReadObject() and ReadSeparateObject(),
can be used to load subobjects as either persistent data members of the root object or as
temporary local objects. In contrast to Read(), these methods assume that there is no file header
on the stream.

As a result of executing ReadObject(member), the newly created subobject will be instantiated
as a member of its parent object. In contrast, ReadSeparateObject(local), instantiates the
subobject in the local temporary variable only, and the corresponding data member in the parent
object is set to an appropriate null representation for that data type. In this case, an attempt to
reference that subobject after exiting the scope where it was created generates an error.

The Skip() and SkipObject() methods allow entire top-level objects and subobjects to be
"skipped". In this case the input is still read from the stream and validated, but no object
representation for that data is generated. Instead, the data is stored in a delay buffer associated
with the object input stream, where it can be accessed as needed. Skip() should only be applied
to top-level objects. As with the Read() method, the optional ENoFileHeader argument can be
included if the file header has already been extracted from the data stream. SkipObject
(member) may be applied to subobjects of the root object.

All of the Read and Skip methods are like wrapper functions, which define what activities take
place immediately before and after the data is actually read. How and when the data is then
loaded into memory is determined by the object itself. Each of the above methods ultimately
calls objTypeInfo->ReadData() or objTypeInfo->SkipData(), where objTypeInfo is the static
type information object associated with the data object. This scheme allows the user to install
type-specific read, write, and copy hooks, which are described below. For example, the default
behavior of loading all subobjects of the top-level object can be modified by installing
appropriate read hooks which use the ReadSeparateObject() and SkipObject() methods where
needed.

The CObjectOStream (*) classes
The output object stream classes mirror the CObjectIStream classes. The CObjectOStream
base class is used to derive the CObjectOStreamXml, CObjectOStreamAsn, and
CObjectOStreamAsnBinary classes. There are no public constructors, and the user interface
includes the following methods:

• Open()
• Close()
• GetDataFormat()
• WriteFileHeader()
• Write()
• WriteObject()

Page 6

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadSeparateObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html

• WriteSeparateObject()
• Flush()
• FlushBuffer()

Again, there are several Open() methods, which are static class methods that return a pointer
to a newly created CObjectOstream:

static CObjectOStream* Open(ESerialDataFormat format,
 CNcbiOstream &outStream,
 EOwnership deleteOutStream=eNoOwnership,
 TSerial_Format_Flags formatFlags=0)

static CObjectOStream* Open(ESerialDataFormat format,
 const string &fileName,
 TSerialOpenFlags openFlags=0,
 TSerial_Format_Flags formatFlags=0)

static CObjectOStream* Open(const string &fileName,
 ESerialDataFormat format,
 TSerial_Format_Flags formatFlags=0)

The Write*() methods correspond to the Read*() methods defined for the input streams. Write
() first calls WriteFileHeader(), and then calls WriteObject(). WriteSeparateObject() can be
used to write a temporary object (and all of its children) to the output stream. It is also possible
to install type-specific write hooks. Like the Read() methods, these Write() methods serve as
wrapper functions that define what occurs immediately before and after the data is actually
written.

The CObjectStreamCopier (*) classes
The CObjectStreamCopier class is neither an input nor an output stream class, but a helper
class, which allows one to "pass data through" without storing the intermediate objects in
memory. Its sole constructor is:

CObjectStreamCopier(CObjectIStream& in, CObjectOStream& out);

and its most important method is the Copy(CObjectTypeInfo&) method, which, given an
object's description, reads that object from the input stream and writes it to the output stream.
The serial formats of both the input and output object streams are implicit, and thus the
translation between two different formats is performed automatically.

In keeping with the Read and Write methods of the CObjectIStream and CObjectOStream
classes, the Copy method takes an optional ENoFileHeader argument, to indicate that the file
header is not present in the input and should not be generated on the output. The CopyObject
() method corresponds to the ReadObject() and WriteObject() methods.

As an example, consider how the Run() method in xml2asn.cpp might be implemented
differently using the CObjectStreamCopier class:

int CTestAsn::Run() {
auto_ptr<CObjectIStream>
xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
auto_ptr<CObjectOStream>

Page 7

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html

txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
CObjectStreamCopier txt_copier(*xml_in, *txt_out);
txt_copier.Copy(CBiostruc::GetTypeInfo());
auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
CObjectStreamCopier bin_copier(*xml_in, *bin_out);
bin_copier.Copy(CBiostruc::GetTypeInfo());
return 0;
}

It is also possible to install type-specific Copy hooks. Like the Read and Write methods, the
Copy methods serve as wrapper functions that define what occurs immediately before and after
the data is actually copied.

Type-specific I/O routines – the hook classes
Much of the functionality needed to read and write serializable objects may be type-specific
yet application-driven. Because the specializations may vary with the application, it does not
make sense to implement fixed methods, yet we would like to achieve a similar kind of object-
specific behavior.

To address these needs, the C++ Toolkit provides hook mechanisms, whereby the needed
functionality can be installed with the object's static class type information object. Local hooks
apply to a selected stream whereas global hooks apply to all streams. Note: global skip hooks
are not supported.

For any given object type, stream, and processing mode (e.g. reading), at most one hook is
"active". The active hook for the current processing mode will be called when objects of the
given type are encountered in the stream. For example, suppose that local and global hooks
have been set for a given object type. Then if a read occurs on the stream for which the local
hook was set, the local hook will be called, otherwise the global hook will be called. Designating
multiple read/write hooks (both local and global) for a selected object does not generate an
error. Older or less specific hooks are simply overridden by the more specific or most recently
installed hook.

Understanding and creating hooks properly relies on three distinct concepts:
• Structural Context – the criteria for deciding which objects in the stream will be

hooked.
• Processing Mode – what is being done when the hook should be called. Hooks will

only be called in the corresponding processing mode. For example, if content is being
skipped, only skip hooks will be called. If the mode changes to reading, then only read
hooks will be called.

• Operation – easily confused with processing mode, the operation is what is done inside
the hook, not what is being done when the hook is called.

Note: The difference between processing mode and operation can be very confusing. It is
natural to think, for example, "I want to read Bioseq id's" without considering how the stream
is being processed. The next natural step is to conclude "I want a read hook" - but that could
be incorrect. Instead, one should think "I want to read a Bioseq id inside a hook". Only then
should the processing mode be chosen, and it may not match the operation performed inside
the hook. The processing mode should be chosen based on what should be done with the rest
of the stream and whether or not it's necessary to retain the data outside the hook. For example,
if you want to read Bioseq id's and don't care about anything else, then you should probably

Page 8

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

choose the 'skip' processing mode (meaning you would use a skip hook), and within the skip
hook you would read the Bioseq id. Or, if you wanted to read entire Bioseq's for later analysis
while automatically building a list of Bioseq id's, you would have to use the 'read' processing
mode (and therefore a read hook) to save the data for later analysis. Inside the read hook you
would use a read operation (to save the data) and at the same time you would have access to
the id for building the list of id's.

There are three main structural contexts in which an object might be encountered in a stream:

Context Description

Object When the stream object matches a specified type – for example, the Bioseq type.

Class Member When the stream object matches a specified member of a specified SEQUENCE type – for example, the id member of the Bioseq
type.

Choice Variant When the stream object matches a specified variant of a specified CHOICE type – for example, the std variant of the Date type.

Complex structural contexts can be created by nesting the main structural contexts. For
example, a stack path hook can apply to a specific class member, but only when it is nested
inside another specified class member.

There are four processing modes that can be applied to input/output streams:

Mode Description

Read When objects are parsed from an input stream and a deserialized instance is retained.

Skip When objects are parsed from an input stream but a deserialized instance is not retained

Copy When objects are parsed from an input stream and written directly to an output stream.

Write When objects are written to an output stream.

The operation is not restricted to a limited set of choices. It can be any application-specific
task, as long as that task is compatible with the processing mode. For example, a skip operation
can be performed inside a read hook, provided that the skipped content is optional for the object
being read. Similarly, a read operation can be performed inside a skip hook. The operation
performed inside a hook must preserve the integrity of the hooked object, and must advance
the stream all the way through the hooked object and no farther.

Hooks can be installed for all combinations of structural context and processing mode. Each
combination has a base class that defines a pure virtual method that must be defined in a derived
class to implement the hook – e.g. the CReadObjectHook class defines a pure virtual
ReadObject() method. The definition of the overriding method in the derived class is often
referred to as "the hook".

Object Class Member Choice Variant

Read CReadObjectHook CReadClassMemberHook CReadChoiceVariantHook

Write CWriteObjectHook CWriteClassMemberHook CWriteChoiceVariantHook

Copy CCopyObjectHook CCopyClassMemberHook CCopyChoiceVariantHook

Skip CSkipObjectHook CSkipClassMemberHook CSkipChoiceVariantHook

Page 9

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

In addition, there is a hook guard class, which simplifies creating any of the above hooks. There
are also stack path hook methods corresponding to each structural context / processing mode
combination above, making it easy to create hooks for virtually any conceivable situation.

Hook Sample
Here is a complete program that illustrates how to create a read hook for class members (other
sample programs are available at http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c%2B%2B/
src/sample/app/serial/):

#include <ncbi_pch.hpp>
#include <objects/general/Date_std.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

// This class implements a read hook for class members.
//
// A read hook is created by passing a new instance of this class to a
// "set hook" method. Hooks may be created as global or local. Global hooks
// apply to all streams, whereas local hooks are associated with a specific
// stream. Thus, the "set hook" methods for creating class member read hooks
// are:
// SetGlobalReadHook()
// SetLocalReadHook()
//
// This class must override the virtual method ReadClassMember(). See the
// comment for the ReadClassMember() method below for more details.
//
// In principle, multiple instances of this hook class could be used to
provide
// the same hook processing for more than one entity. However, it is probably
// best to create a separate class for each "thing" you want to hook and
// process.
//
// You should adopt a meaningful naming convention for your hook classes.
// In this example, the convention is C<mode><context>Hook_<object>__<member>
// where: <mode>=(Read|Write|Copy|Skip)
// <context>=(Obj|CM|CV) -- object, class member, or choice variant
// and hyphens in ASN.1 object types are replaced with underscores.
//
// Note: Since this is a read hook, ReadClassMember() will only be called
when
// reading from the stream. If the stream is being skipped, ReadClassMember()
// will not be called. If you want to use a hook to read a specific type of
// class member while skipping everything else, use a skip hook and call
// DefaultRead() from within the SkipClassMember() method.
//
// Note: This example is a read hook, which means that the input stream is
// being read when the hook is called. Hooks for other processing modes

Page 10

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c%252B%252B/src/sample/app/serial/
http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c%252B%252B/src/sample/app/serial/

// (Write, Skip, and Copy) are similarly created by inheriting from the
// respecitive base classes. It is also a ClassMember hook. Hooks for
// other structural contexts (Object and ChoiceVariant) a similarly derived
// from the appropriate base.
class CDemoHook : public CReadClassMemberHook
{
public:
 // Implement the hook method.
 //
 // Once the read hook has been set, ReadClassMember() will be called
 // whenever the specified class member is encountered while
 // reading a hooked input stream. Without the hook, the encountered
 // class member would have been automatically read. With the hook, it is
 // now the responsibility of the ReadClassMember() method to remove the
 // class member from the input stream and process it as desired. It can
 // either read it or skip it to remove it from the stream. This is
 // easily done by calling DefaultRead() or DefaultSkip() from within
 // ReadClassMember(). Subsequent processing is up to the application.
 virtual void ReadClassMember(CObjectIStream& in,
 const CObjectInfoMI& passed_info)
 {
 // Perform any pre-read processing here.
 //NcbiCout << "In ReadClassMember() hook, before reading." << NcbiEndl;

 // You must call DefaultRead() (or perform an equivalent operation)
 // if you want the object to be read into memory. You could also
 // call DefaultSkip() if you wanted to skip the hooked object while
 // reading everything else.
 DefaultRead(in, passed_info);

 // Perform any post-read processing here. Once the object has been
 // read, its data can be used for processing. For example, here we dump
 // the read object into the standard output.
 NcbiCout << MSerial_AsnText << passed_info.GetClassObject();
 }
};

int main(int argc, char** argv)
{
 // Create some ASN.1 data that can be parsed by this code sample.
 char asn[] = "Date-std ::= { year 1998 }";

 // Setup an input stream, based on the sample ASN.1.
 CNcbiIstrstream iss(asn);
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, iss));

 //
 // Create a hook for the 'year' class member of Date-std objects.
 // The year class member was aribtrarily chosen to illustrate the
 // use of hooks - many other entities would work equally well.

Page 11

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 // Get data structures that model the type information for Date-std
 // objects and their 'year' class members.
 // The type information will be used to recognize and forward 'year'
 // class members of Date-std objects found in the stream to the hook.
 CObjectTypeInfo typeInfo = CType<CDate_std>();
 CObjectTypeInfoMI memberInfo = typeInfo.FindMember("year");

 // Set a local hook for Date-std 'year' class members. This involves
 // creating an instance of the hook class and passing that hook to the
 // "set hook" method, which registers the hook to be called when a hooked
 // type is encountered in the stream.
 memberInfo.SetLocalReadHook(*in, new CDemoHook);

 // The above three statements could be shortened to:
 //CObjectTypeInfo(CType<CDate_std>()).FindMember("year")
 // .SetLocalReadHook(*in, new CDemoHook);

 // Read from the input stream, storing data in the object. At this point,
 // the hook is in place so simply reading from the input stream will
 // cause the hook to be triggered whenever the 'year' class member is
 // encountered.
 CDate_std my_date;
 *in >> my_date;

 return 0;
}

Read mode hooks
All of the different structural contexts in which an object might be encountered on an input
stream can be reduced to three cases:

• as a stand-alone object
• as a data member of a containing object
• as a variant of a choice object

Hooks can be installed for each of the above contexts, depending on the desired level of
specificity. Corresponding to these contexts, three abstract base classes provide the foundations
for deriving new Read hooks:

• CReadObjectHook
• CReadClassMemberHook
• CReadChoiceVariantHook

Each of these base hook classes exists only to define a pure virtual Read method, which can
then be implemented (in a derived subclass) to install the desired type of read hook. If the goal
is to apply the new Read method in all contexts, then the new hook should be derived from the
CReadObjectHook class, and registered with the object's static type information object. For
example, to install a new CReadObjectHook for a CBioseq, one might use:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
 SetLocalReadHook(*in, myReadBioseqHook);

Page 12

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Another way of installing hooks of any type (read/write/copy, object/member/variant) is
provided by CObjectHookGuard class described below.

Alternatively, if the desired behavior is to trigger the specialized Read method only when the
object occurs as a data member of a particular containing class, then the new hook should be
derived from the CReadClassMemberHook, and registered with that member's type
information object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
 FindMember("Seq-inst").SetLocalReadHook(*in, myHook);

Similarly, one can install a read hook that will only be triggered when the object occurs as a
choice variant:

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).
 FindVariant("Bioseq").SetLocalReadHook(*in, myReadBioseqHook);

The new hook classes for these examples should be derived from CReadObjectHook,
CReadClassMemberHook, and CReadChoiceVariantHook, respectively. In the first case, all
occurrences of CBioseq on any input stream will trigger the new Read method. In contrast, the
third case installs this new Read method to be triggered only when the CBioseq occurs as a
choice variant in a CSeq_entry object.

All of the virtual Read methods take two arguments: a CObjectIStream and a reference to a
CObjectInfo. For example, the CReadObjectHook class declares the ReadObject() method as:

virtual void ReadObject(CObjectIStream& in,
 const CObjectInfo& object) = 0;

The ReadClassMember and ReadChoiceVariant hooks differ from the ReadObject hook class,
in that the second argument to the virtual Read method is an iterator, pointing to the object
type information for a sequence member or choice variant respectively.

In summary, to install a read hook for an object type:

derive a new class from the appropriate hook class:
• if the hook should be called regardless of the structural context in which the target

object occurs, use the CReadObjectHook class.
• if the target object occurs as a sequence member, use the CReadClassMemberHook

class.
• if the target object occurs as a choice variant, use the CReadChoiceVariant Hook class.

implement the virtual Read method for the new class.

install the hook, using the SetLocalReadHook() method defined in
• CObjectTypeInfo for a CReadObjectHook
• CMemberInfo for a CReadClassMemberHook
• CVariantInfo for a CReadChoiceVariantHook

or use CObjectHookGuard class to install any of these hooks.

In many cases you will need to read the hooked object and do some special processing, or to
skip the entire object. To simplify object reading or skipping all base hook classes have

Page 13

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

DefaultRead() and DefaultSkip() methods taking the same arguments as the user provided
ReadXXXX() methods. Thus, to read a bioseq object from a hook:

void CMyReadObjectHook::ReadObject(CObjectIStream& in,
 const CObjectInfo& object)
{
 DefaultRead(in, object);
 // Do some user-defined processing of the bioseq
}

Note that from a choice variant hook you can not skip stream data -- this could leave the choice
object in an uninitialized state. For this reason the CReadChoiceVariantHook class has no
DefaultSkip() method.

Read Object Hook Sample
A read object hook can be created very much like other hooks. For example, the executable
lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/general/Date_std.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CReadObjectHook
{
public:
 virtual void ReadObject(CObjectIStream& strm,
 const CObjectInfo& passed_info)
 {
 DefaultRead(strm, passed_info);
 }
};

int main(int argc, char** argv)
{
 char asn[] = "Date-std ::= { year 1998 }";
 CNcbiIstrstream iss(asn);
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, iss));

 CObjectTypeInfo(CType<CDate_std>()).SetLocalReadHook(*in, new CDemoHook());

 CDate_std my_date;
 *in >> my_date;

 return 0;
}

See the class documentation for more information.

Page 14

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCReadObjectHook.html

Read Class Member Hook Sample
A read class member hook can be created very much like other hooks. For an example, see the
hook sample.

See the class documentation for more information.

Read Choice Variant Hook Sample
A read choice variant hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/general/Date.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CReadChoiceVariantHook
{
public:
 virtual void ReadChoiceVariant(CObjectIStream& strm,
 const CObjectInfoCV& passed_info)
 {
 DefaultRead(strm, passed_info);
 }
};

int main(int argc, char** argv)
{
 char asn[] = "Date ::= str \"late-spring\"";
 CNcbiIstrstream iss(asn);
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, iss));

 CObjectTypeInfo(CType<CDate>()).FindVariant("str")
 .SetLocalReadHook(*in, new CDemoHook);

 CDate my_date;
 *in >> my_date;

 return 0;
}

See the class documentation for more information.

Write mode hooks
The Write hook classes parallel the Read hook classes, and again, we have three base classes:

• CWriteObjectHook
• CWriteClassMemberHook
• CWriteChoiceVariantHook

Page 15

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCReadClassMemberHook.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCReadChoiceVariantHook.html

These classes define the pure virtual methods:

CWriteObjectHook::WriteObject(CObjectOStream&,
 const CConstObjectInfo& object) = 0;

CWriteClassMemberHook::WriteClassMember(CObjectOStream&,
 const CConstObjectInfoMI& member) = 0;

CWriteChoiceVariantHook::WriteChoiceVariant(CObjectOStream&,
 const CConstObjectInfoCV& variant) = 0;

Like the read hooks, your derived write hooks can be installed by invoking the
SetLocalWriteObjectHook() methods for the appropriate type information objects.
Corresponding to the examples for read hooks then, we would have:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
 SetLocalWriteHook(*in, myWriteBioseqHook);

CObjectTypeInfo(CBioseq::GetTypeInfo()).
 FindMember("Seq-inst").SetLocalWriteHook(*in, myWriteSeqinstHook);

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).
 FindVariant("Bioseq").SetLocalWriteHook(*in, myWriteBioseqHook);

CObjectHookGuard class provides is a simple way to install write hooks.

Write Object Hook Sample
A write object hook can be created very much like other hooks. For example, the executable
lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CWriteObjectHook
{
public:
 virtual void WriteObject(CObjectOStream& out,
 const CConstObjectInfo& passed_info)
 {
 DefaultWrite(out, passed_info);
 }
};

int main(int argc, char** argv)

Page 16

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));

 CObjectTypeInfo(CType<CCit_art>()).SetLocalWriteHook(*out, new CDemoHook);

 CCit_art article;
 *in >> article;
 *out << article;

 return 0;
}

See the class documentation for more information.

Write Class Member Hook Sample
A write class member hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Auth_list.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook: public CWriteClassMemberHook
{
public:
 virtual void WriteClassMember(CObjectOStream& out,
 const CConstObjectInfoMI& passed_info)
 {
 DefaultWrite(out, passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));

 CObjectTypeInfo(CType<CAuth_list>())
 .FindMember("names")
 .SetLocalWriteHook(*out, new CDemoHook);

 CCit_art article;
 *in >> article;

Page 17

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCWriteObjectHook.html

 *out << article;

 return 0;
}

See the class documentation for more information.

Write Choice Variant Hook Sample
A write choice variant hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Auth_list.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CWriteChoiceVariantHook
{
public:
 virtual void WriteChoiceVariant(CObjectOStream& out,
 const CConstObjectInfoCV& passed_info)
 {
 DefaultWrite(out, passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));

 (*CObjectTypeInfo(CType<CAuth_list>()).FindMember("names"))
 .GetPointedType()
 .FindVariant("std")
 .SetLocalWriteHook(*out, new CDemoHook);

 CCit_art article;
 *in >> article;
 *out << article;

 return 0;
}

See the class documentation for more information.

Page 18

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCWriteClassMemberHook.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCWriteChoiceVariantHook.html

Copy mode hooks
As with the Read and Write hook classes, there are three base classes which define the following
Copy methods:

CCopyObjectHook::CopyObject(CObjectStreamCopier& copier,
 const CObjectTypeInfo& object) = 0;

CCopyClassMemberHook::CopyClassMember(CObjectStreamCopier& copier,
 const CObjectTypeInfoMI& member) = 0;

CCopyChoiceVariantHook::CopyChoiceVariant(CObjectStreamCopier& copier,
 const CObjectTypeInfoCV& variant) = 0;

Newly derived copy hooks can be installed by invoking the SetLocalCopyObjectHook()
method for the appropriate type information object. The other way of installing hooks is
described below in the CObjectHookGuard section.

To do default copying of an object in the overloaded hook method each of the base copy hook
classes has a DefaultCopy() method.

Copy Object Hook Sample
A copy object hook can be created very much like other hooks. For example, the executable
lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objcopy.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CCopyObjectHook
{
public:
 virtual void CopyObject(CObjectStreamCopier& copier,
 const CObjectTypeInfo& passed_info)
 {
 DefaultCopy(copier, passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));
 CObjectStreamCopier copier(*in, *out);

Page 19

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 CObjectTypeInfo(CType<CCit_art>())
 .SetLocalCopyHook(copier, new CDemoHook());

 copier.Copy(CType<CCit_art>());

 return 0;
}

See the class documentation for more information.

Copy Class Member Hook Sample
A copy class member hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/seq/Bioseq.hpp>
#include <objects/seqset/Seq_entry.hpp>
#include <serial/objcopy.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CCopyClassMemberHook
{
public:
 virtual void CopyClassMember(CObjectStreamCopier& copier,
 const CObjectTypeInfoMI& passed_info)
 {
 DefaultCopy(copier, passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));
 CObjectStreamCopier copier(*in, *out);

 CObjectTypeInfo(CType<CBioseq>())
 .FindMember("annot")
 .SetLocalCopyHook(copier, new CDemoHook());

 copier.Copy(CType<CBioseq>());

 return 0;
}

Page 20

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCopyObjectHook.html

See the class documentation for more information.

Copy Choice Variant Hook Sample
A copy choice variant hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Auth_list.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objcopy.hpp>
#include <serial/objectio.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/serial.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CCopyChoiceVariantHook
{
public:
 virtual void CopyChoiceVariant(CObjectStreamCopier& copier,
 const CObjectTypeInfoCV& passed_info)
 {
 DefaultCopy(copier, passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));
 auto_ptr<CObjectOStream> out(CObjectOStream::Open(eSerial_AsnText, "of"));
 CObjectStreamCopier copier(*in, *out);

 (*CObjectTypeInfo(CType<CAuth_list>()).FindMember("names"))
 .GetPointedType()
 .FindVariant("std")
 .SetLocalCopyHook(copier, new CDemoHook);

 copier.Copy(CType<CCit_art>());

 return 0;
}

See the class documentation for more information.

Skip mode hooks
As with the Read and Write hook classes, there are three base classes which define the following
Skip methods:

Page 21

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCopyClassMemberHook.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCopyChoiceVariantHook.html

CSkipObjectHook::SkipObject(CObjectIStream& in,
 const CObjectTypeInfo& object) = 0;

CSkipClassMemberHook::SkipClassMember(CObjectIStream& in,
 const CObjectTypeInfoMI& member) = 0;

CSkipChoiceVariantHook::SkipChoiceVariant(CObjectIStream& in,
 const CObjectTypeInfoCV& variant) = 0;

Newly derived skip hooks can be installed by invoking the SetLocalSkipObjectHook() method
for the appropriate type information object. The other way of installing hooks is described
below in the CObjectHookGuard section.

The CSkipObjectHook class has a DefaultSkip() method, like the base classes for the other
processing modes, but for historical reasons DefaultSkip() methods were not defined for the
CSkipClassMemberHook and CSkipChoiceVaraintHook classes. Nevertheless, achieving the
same result is easily accomplished – for example:

class CMySkipClassMemberHook : public CSkipClassMemberHook
{
public:
 virtual void SkipClassMember(CObjectIStream& in,
 const CObjectTypeInfoMI& member)
 {
 in.SkipObject(*member);
 }
};

Skip Object Hook Sample
A skip object hook can be created very much like other hooks. For example, the executable
lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objistr.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CSkipObjectHook
{
public:
 virtual void SkipObject(CObjectIStream& in,
 const CObjectTypeInfo& passed_info)
 {
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));

Page 22

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 CObjectTypeInfo(CType<CCit_art>()).SetLocalSkipHook(*in, new CDemoHook);

 in->Skip(CType<CCit_art>());

 return 0;
}

See the class documentation for more information.

Skip Class Member Hook Sample
A skip class member hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

#include <ncbi_pch.hpp>
#include <objects/biblio/Auth_list.hpp>
#include <objects/biblio/Cit_art.hpp>
#include <serial/objistr.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CSkipClassMemberHook
{
public:
 virtual void SkipClassMember(CObjectIStream& in,
 const CObjectTypeInfoMI& passed_info)
 {
 in.SkipObject(*passed_info);
 }
};

int main(int argc, char** argv)
{
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, "if"));

 CObjectTypeInfo(CType<CAuth_list>())
 .FindMember("names")
 .SetLocalSkipHook(*in, new CDemoHook);

 in->Skip(CType<CCit_art>());

 return 0;
}

See the class documentation for more information.

Skip Choice Variant Hook Sample
A skip choice variant hook can be created very much like other hooks. For example, the
executable lines in the hook sample, can be replaced with:

Page 23

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSkipObjectHook.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSkipClassMemberHook.html

#include <ncbi_pch.hpp>
#include <objects/biblio/Imprint.hpp>
#include <objects/general/Date.hpp>
#include <serial/objistr.hpp>

USING_NCBI_SCOPE;
USING_SCOPE(ncbi::objects);

class CDemoHook : public CSkipChoiceVariantHook
{
public:
 virtual void SkipChoiceVariant(CObjectIStream& in,
 const CObjectTypeInfoCV& passed_info)
 {
 in.SkipObject(*passed_info);
 }
};

int main(int argc, char** argv)
{
 char asn[] = "Imprint ::= { date std { year 2010 } }";
 CNcbiIstrstream iss(asn);
 auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, iss));

 CObjectTypeInfo(CType<CDate>()).FindVariant("std")
 .SetLocalSkipHook(*in, new CDemoHook());

 in->Skip(CType<CImprint>());

 return 0;
}

See the class documentation for more information.

The CObjectHookGuard class
To simplify hooks usage CObjectHookGuard class may be used. It's a template class: the
template parameter is the class to be hooked (in case of member or choice variant hooks it's
the parent class of the member).

The CObjectHookGuard class has several constructors for installing different hook types. The
last argument to all constructors is a stream pointer. By default the pointer is NULL and the
hook is intalled as a global one. To make the hook stream-local pass the stream to the guard
constructor.

• Object read/write hooks:
CObjectHookGuard(CReadObjectHook& hook,
CObjectIStream* in = 0);
CObjectHookGuard(CWriteObjectHook& hook,
CObjectOStream* out = 0);

• Class member read/write hooks:
CObjectHookGuard(string id,
CReadClassMemberHook& hook,

Page 24

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSkipChoiceVariantHook.html

CObjectIStream* in = 0);
CObjectHookGuard(string id,
CWriteClassMemberHook& hook,
CObjectOStream* out = 0);

The string "id" argument is the name of the member in ASN.1 specification for generated
classes.

• Choice variant read/write hooks:
CObjectHookGuard(string id,
CReadChoiceVariantHook& hook,
CObjectIStream* in = 0);
CObjectHookGuard(string id,
CWriteChoiceVariantHook& hook,
CObjectOStream* out = 0);

The string "id" argument is the name of the variant in ASN.1 specification for generated classes.

The guard's destructor will uninstall the hook. Since all hook classes are derived from CObject
and stored as CRef<>-s, the hooks are destroyed automatically when uninstalled. For this
reason it's recommended to create hook objects on heap.

Stack Path Hooks
When an object is serialized or deserialized, a string called the stack path is created internally
to track the structural context of the current location. The stack path starts with the type name
of the top-level data object. While each sub-object is processed, a '.' and the sub-object name
are "pushed on the stack".

An example of a possible stack path string is:

Seq-entry.set.seq-set.seq.annot.data.ftable.data.pub.pub.article

Hooks based on the stack path can be created if you need to specify a more complex structural
context for when a hook should be called. More complex, that is, than the "object", "class
member", and "choice variant" contexts discussed in earlier sections. For example, "I want to
hook the reading of objects named 'title' when and only when they are contained by objects
named 'book', not all occurrences of 'title' objects", or, "I want to hook the reading of all
sequence members named 'title' in all objects, not only in a specific one". The serial library
makes it possible to set hooks for such structural contexts by passing a stack path mask to
various "SetHook" methods. When the stack path string for the object being processed matches
the stack path mask, the hook will be called.

The general form of the stack path mask is:

TypeName.Member1.Member2.HookedMember

More formally:

StackPathMask ::= (TypeName | Wildcard) ('.' (MemberName | Wildcard))+

Here TypeName and MemberName are strings; '.' separates path elements; and Wildcard is
defined as:

Wildcard ::= ('?' | '*')

Page 25

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The question mark means "match exactly one path element with any name", while the asterisk
means "match one or more path elements with any names".

An example of a possible stack path mask is:

.article..authors

Note: The first element of the stack path mask must be either a wildcard or the type of the top-
level object in the stream. Type names are not permitted anywhere but the first element, which
makes stack path masks like "*.Cit-book.*.date" invalid (ASN.1 type names begin with
uppercase while member names begin with lowercase).

As with regular serialization hooks, it is possible to install a path hook for a specific object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
 SetPathReadHook(in, path, myReadBioseqHook);

a member of a sequence object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("inst").
 SetPathReadHook(in, path, myReadSeqinstHook);

or a variant of a choice object:

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("seq").
 SetPathReadHook(in, path, myReadBioseqHook);

Here in is a pointer to an input object stream. If it is equal to zero, the hook will be installed
globally, otherwise - for that particular stream.

In addition, it is possible to install path hooks directly in object streams without specifying an
ASN.1 type. For example, to install a read hook on all string objects named last-name, one
could use either this:

CObjectTypeInfo(CStdTypeInfo<string>::GetTypeInfo()).
 SetPathReadHook(in,"*.last-name",myObjHook);

or this:

in->SetPathReadObjectHook("*.last-name", myObjHook);

Setting path hooks directly in streams also makes it possible to differentiate between last-name
being a sequence member and choice variant. So, for example:

in->SetPathReadMemberHook("*.last-name", myMemHook);

will hook sequence members and not choice variants, while:

in->SetPathReadVariantHook("*.last-name", myVarHook);

will hook choice variants and not sequence members.

Page 26

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Stack path hooks can be removed by passing NULL instead of a hook pointer to the various
"SetHook" methods.

Stream Iterators
When working with a stream, it is sometimes convenient to be able to read or write data
elements directly, bypassing the standard data storage mechanism. For example, when reading
a large container object, the purpose could be to process its elements. It is possible to read
everything at once, but this could require a lot of memory to store the data in. An alternative
approach, which greatly reduces the amount of required memory, could be to read elements
one by one, process them as they arrive, and then discard. Or, when writing a container, one
could construct it in memory only partially, and then add missing elements 'on the fly' - where
appropriate. To make it possible, the SERIAL library introduces stream iterators. Needless to
say, the most convenient way of using this mechanism is in read/write hooks.

SERIAL library defines the following stream iterator classes: CIStreamClassMemberIterator
and CIStreamContainerIterator for input streams, and COStreamClassMember and
COStreamContainer for output ones.

Reading a container could look like this:

for (CIStreamContainerIterator it(in, containerType); it; ++it) {
 CElementClass element;
 it >> element;
}

Writing - like this:

set<CElementClass> container; // your container
............
COStreamContainer osc(out, containerType);
ITERATE(set<CElementClass>, it, container) {
 const CElementClass& element = *it;
 osc << element;
}

For more examples of using stream iterators please refer to asn2asn sample application.

The ByteBlock and CharBlock classes
CObject[IO]Stream::ByteBlock class may be used for non-standard processing of an OCTET
STRING data, e.g. from a read/write hooks. The CObject[IO]Stream::CharBlock class has
almost the same functionality, but may be used for VisibleString data processing.

An example of using ByteBlock or CharBlock classes is generating data on-the-fly in a write
hook. To use block classes:

Initialize the block variable with an i/o stream and, in case of output stream, the length of the
block.

Use Read()/Write() functions to process block data

Close the block with the End() function

Page 27

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp

Below is an example of using CObjectOStream::ByteBlock in an object write hook for non-
standard data processing. Note, that ByteBlock and CharBlock classes read/write data only.
You should also provide some code for writing class' and members' tags.

Since OCTET STRING and VisibleString in the NCBI C++ Toolkit are implemented as
vector<char> and string classes, which have no serailization type info, you can not install a
read or write hook for these classes. The example also demonstrates how to process members
of these types using the containing class hook. Another example of using CharBlock with write
hooks can be found in test_serial.cpp application.

void CWriteMyObjectHook::WriteObject(CObjectOStream& out,
 const CConstObjectInfo& object)
{
 const CMyObject& obj = *reinterpret_cast<const CMyObject*>
 (object.GetObjectPtr());
 if (NothingToProcess(obj)) {
 // No special processing - use default write method
 DefaultWrite(out, object);
 return;
 }
 // Write object open tag
 out.BeginClass(object.GetClassTypeInfo());
 // Iterate object members
 for (CConstObjectInfo::CMemberIterator member =
 object.BeginMembers(); member; ++member) {
 if (NeedProcessing(member)) {
 // Write the special member manually
 out.BeginClassMember(member.GetMemberInfo()->GetId());
 // Start byte block, specify output stream and block size
 size_t length = GetRealDataLength(member);
 CObjectOStream::ByteBlock bb(out, length);
 // Processing and output
 for (int i = 0; i < length;) {
 char* buf;
 int buf_size;
 // Assuming ProcessData() generates the data from "member",
 // starting from position "i" and stores the data to "buf"
 ProcessData(member, i, &buf_size, &buf);
 i += buf_size;
 bb.Write(buf, buf_size);
 }
 }
 // Close the byte block
 bb.End();
 // Close the member
 out.EndClassMember();
 }
 else {
 // Default writer for members without special processing
 if (member.IsSet())
 out.WriteClassMember(member);
 }

Page 28

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/test_serial.cpp

 // Close the object
 out.EndClass();
}

NCBI C++ Toolkit Network Service (RPC) Clients
The following topics are discussed in this section:

• Introduction and Use
• Implementation Details

Introduction and Use
The C++ Toolkit now contains datatool-generated classes for certain ASN.1-based network
services: at the time of this writing, Entrez2, ID1, and MedArch. (There is also an independently
written class for the Taxon1 service, CTaxon1, which this page does not discuss further.) All
of these classes, declared in headers named objects/.../client(_).hpp, inherit certain useful
properties from the base template CRPCClient<>:

• They normally defer connection until the first actual query, and disconnect
automatically when destroyed, but let users request either action explicitly.

• They are designed to be thread-safe (but, at least for now, maintain only a single
connection per instance, so forming pools may be appropriate).

The usual interface to these classes is through a family of methods named AskXxx, each of
which takes a request of an appropriate type and an optional pointer to an object that will receive
the full reply and returns the corresponding reply choice. For example,
CEntrez2Client::AskEval_boolean takes a request of type const CEntrez2_eval_boolean& and
an optional pointer of type CEntrez2_reply*, and returns a reply of type
CRef<CEntrez2_boolean_reply>. All of these methods automatically detect server-reported
errors or unexpected reply choices, and throw appropriate exceptions when they occur. There
are also lower-level methods simply named Ask, which may come in handy if you do not know
what kind of query you will need to make.

In addition to these standard methods, there are certain class-specific methods: CEntrez2Client
adds GetDefaultRequest and SetDefaultRequest for dealing with those fields of Entrez2-
request besides request itself, and CID1Client adds {Get,Set}AllowDeadEntries (off by
default) to control how to handle the result choice gotdeadseqentry.

Implementation Details
In order to get datatool to generate classes for a service, you must add some settings to the
corresponding modulename.def file. Specifically, you must set [-]clients to the relevant base
file name (typically service_client), and add a correspondingly named section containing the
entries listed in Table 1. (If a single specification defines multiple protocols for which you
would like datatool to generate classes, you may list multiple client names, separated by
spaces.)

Verification of Class Member Initialization
When serializing an object, it is important to verify that all mandatory primitive data members
(e.g. strings, integers) are given a value. The NCBI C++ Toolkit implements this through a
data initialization verification mechanism. In this mechanism, the value itself is not validated;
that is, it still could be semantically incorrect. The purpose of the verification is only to make
sure that the member has been assigned some value. The verification also provides for a
possibility to check whether the object data member has been initialized or not. This could be
useful when constructing such objects in memory.

Page 29

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTaxon1&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRPCClient&d=C
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app

From this perspective, each data member (XXX) of a serial object generated by DATATOOL
from an ASN or XML specification has the IsSetXXX() and CanGetXXX() methods. Also,
input and output streams have SetVerifyData() and GetVerifyData() methods. The purpose of
CanGetXXX() method is to answer the question whether it is safe or not to call the
corresponding GetXXX(). The meaning of IsSetXXX() is whether the data member has been
assigned a value explicitly (using assignment function call, or as a result of reading from a
stream) or not. The stream's SetVerifyData() method defines a stream behavior in case it comes
across an uninitialized data member.

There are three kinds of object data members:
• optional ones,
• mandatory with a default value,
• mandatory with no default value.

Optional members and mandatory ones with no default have "no value" initially. As such, they
are "ungetatable"; that is, GetXXX() throws an exception (this is also configurable though).
Mandatory members with a default are always getable, but not always set. It is possible to
assign a default value to a mandatory member with a default value. In this case it becomes set,
and as such will be written into an output stream.

The discussion above refers only to primitive data members, such as strings, or integers. The
behavior of containers is somewhat different. All containers are pre-created on the parent object
construction, so for container data members CanGetXXX() always returns TRUE. This can be
justified by the fact that containers have a sort of "natural default value" - empty. Also,
IsSetXXX() will return TRUE if the container is either mandatory, or has been read (even if
empty) from the input stream, or SetXXX() was called for it.

The following additional topics are discussed in this section:
• Initialization Verification in CSerialObject Classes
• Initialization Verification in Object Streams

Initialization Verification in CSerialObject Classes
CSerialObject defines two functions to manage how uninitialized data members would be
treated:

 static void SetVerifyDataThread(ESerialVerifyData verify);
 static void SetVerifyDataGlobal(ESerialVerifyData verify);

The SetVerifyDataThread() defines the behavior of GetXXX() for the current thread, while
the SetVerifyDataGlobal() for the current process. Please note, that disabling
CUnassignedMember exceptions in GetXXX() function is potentially dangerous because it
could silently return garbage.

The behavior of initialization verification has been designed to allow for maximum flexibility.
It is possible to define it using environment variables, and then override it in a program, and
vice versa. It is also possible to force a specific behavior, no matter what the program sets, or
could set later on. The ESerialVerifyData enumerator could have the following values:

• eSerialVerifyData_Default
• eSerialVerifyData_No
• eSerialVerifyData_Never

Page 30

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

• eSerialVerifyData_Yes
• eSerialVerifyData_Always

Setting eSerialVerifyData_Never or eSerialVerifyData_Always results in a "forced" behavior:
setting eSerialVerifyData_Never prohibits later attempts to enable verification; setting
eSerialVerifyData_Always prohibits attempts to disable it. The default behavior could be
defined from the outside, using the SET_VERIFY_DATA_GET environment variable:

 SET_VERIFY_DATA_GET ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS')

Alternatively, the default behavior can also be set from a program code using
CSerialObject::SetVerifyDataXXX() functions.

Setting the environment variable to "Never/Always" overrides any attempt to change the
verification behavior in the program. Setting "Never/Always" for the process overrides
attempts to change it for a thread. "Yes/No" setting is less restrictive: the environment variable,
if present, provides the default, which could then be overridden in a program, or thread. Here
thread settings supersede the process ones.

Initialization Verification in Object Streams
Data member verification in object streams is a bit more complex.

First, it is possible to set the verification behavior on three different levels:
• for a specific stream (SetVerifyData()),
• for all streams created by a current thread (SetVerifyDataThread()),
• for all stream created by the current process (SetVerifyDataGlobal()).

Second, there are more options in defining what to do in case of an uninitialized data member:
• throw an exception;
• skip it on writing (write nothing), and leave uninitialized (as is) on reading;
• write some default value on writing, and assign it on reading (even though there is no

default).
To accommodate these situations, the ESerialVerifyData enumerator has two additional values:

• eSerialVerifyData_DefValue
• eSerialVerifyData_DefValueAlways

In this case, on reading a missing data member, stream initializes it with a "default" (usually
0); on writing the unset data member, it writes it "as is". For comparison: in the "No/Never"
case on reading a missing member stream could initialize it with a "garbage", while on writing
it writes nothing. The latter case produces semantically incorrect output, but preserves
information of what has been set, and what is not set.

The default behavior could be set similarly to CSerialObject. The environment variables are
as follows:

 SET_VERIFY_DATA_READ ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' |
 'DEFVALUE' | 'DEFVALUE_ALWAYS')
 SET_VERIFY_DATA_WRITE ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' |
 'DEFVALUE' | 'DEFVALUE_ALWAYS')

Page 31

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Simplified Serialization Interface
The reading and writing of serial object requires creation of special object streams which
encode and decode data. While such streams provide with a greater flexibility in setting the
formatting parameters, in some cases it is not needed - the default behavior is quite enough.
NCBI C++ toolkit library makes it possible to use the standard I/O streams in this case, thus
hiding the creation of object streams. So, the serialization would look like this:

cout << MSerial_AsnText << obj;

The only information that is always needed is the output format. It is defined by the following
stream manipulators:

• MSerial_AsnText
• MSerial_AsnBinary
• MSerial_Json
• MSerial_Xml

Few additional manipulators define the handling of un-initialized object data members:
• MSerial_VerifyDefault
• MSerial_VerifyNo
• MSerial_VerifyYes
• MSerial_VerifyDefValue

Finding in input stream objects of a specific type
When processing serialized data, it is pretty often that one has to find all objects of a specific
type, with this type not being a root one. To make it easier, serial library defines a helper
template function Serial_FilterObjects. The idea is to be able to define a special hook class
with a single virtual function Process with a single parameter: object of the requested type.
Input stream is being scanned then, and, when an object of the requested type is encountered,
the user-supplied function is being called.

For example, suppose an input stream contains Bioseq objects, and you need to find and process
all Seq-inst objects in it. First, you need to define a class that will process them:

Class CProcessSeqinstHook : public
CSerial_FilterObjectsHook<CSeq_inst>
{
public:
 virtual void Process(const CSeq_inst& obj);
};

Second, you just call filtering function specifying the root object type:

Serial_FilterObjects<CBioseq>(input_stream, new
CProcessSeqinstHook());

Another variant of this function – Serial_FilterStdObjects – finds objects of standard type, not
derived from CSerialObject – strings, for example. The usage is similar. First, define a hook
class that will process data:

Page 32

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

class CProcessStringHook : public CSerial_FilterObjectsHook<string>
{
public:
 virtual void Process(const string& obj);
};

Then, call the filtering function:

Serial_FilterStdObjects<CBioseq>(input_stream, new CProcessStringHook());

An even more sophisticated, yet easier to use mechanism relies on multi-threading. It puts data
reading into a separate thread and hides synchronization issues from client application. There
are two template classes, which make it possible: CIStreamObjectIterator and
CIStreamStdIterator. The former finds objects of CSerialObject type:

CIStreamObjectIterator<CBioseq,CSeq_inst> i(input_stream);
for (; i.IsValid(); ++i) {
 const CSeq_inst& obj = *i;
 ...
}

The latter – objects of standard type:

CIStreamStdIterator<CBioseq,string> i(input_stream);
for (; i.IsValid(); ++i) {
 const string& obj = *i;
 ...
}

The NCBI C++ Toolkit Iterators
The following topics are discussed in this section:

• STL generic iterators
• CTypeIterator (*) and CTypeConstIterator (*)
• Class hierarchies, embedded objects, and the NCBI C++ type iterators
• CObjectIterator (*) and CObjectConstIterator (*)
• CStdTypeIterator (*) and CStdTypeConstIterator (*)
• CTypesIterator (*)
• Context filtering in type iterators
• Additional Information

STL generic iterators
Iterators are an important cornerstone in the generic programming paradigm - they serve as
intermediaries between generic containers and generic algorithms. Different containers have
different access properties, and the interface to a generic algorithm must account for this.

The vector class allows input, output, bidirectional, and random access iterators. In contrast,
the list container class does not allow random access to its elements. This is depicted
graphically by one less strand in the ribbon connector. In addition to the iterators, the generic

Page 33

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

algorithms may require function objects such as less<T> to support the template
implementations.

The STL standard iterators are designed to iterate through any STL container of homogeneous
elements, e.g., vectors, lists, deques, stacks, maps, multimaps, sets, multisets, etc. A
prerequisite however, is that the container must have begin() and end() functions defined on it
as start and end points for the iteration.

But while these standard iterators are powerful tools for generic programming, they are of no
help in iterating over the elements of aggregate objects - e.g., over the heterogeneous data
members of a class object. As this is an essential operation in processing serialized data
structures, the NCBI C++ Toolkit provides additional types of iterators for just this purpose.
In the section on Runtime object type information, we described the CMemberIterator and
CVariantIterator classes, which provide access to the instance and type information for all of
the sequence members and choice variants of a sequence or choice object. In some cases
however, we may wish to visit only those data members which are of a certain type, and do
not require any type information. The iterators described in this section are of this type.

CTypeIterator (*) and CTypeConstIterator (*)
The CTypeIterator and CTypeConstIterator can be used to traverse a structured object, stopping
at all data members of a specified type. For example, it is very common to represent a linked
list of objects by encoding a next field that embeds an object of the same type. One way to
traverse the linked list then, would be to "iterate" over all objects of that type, beginning at the
head of the list. For example, suppose you have a CPersonclass defined as:

class CPerson
{
public:
 CPerson(void);
 CPerson(const string& name, const string& address, CPerson* p);
 virtual ~CPerson(void);
 static const CTypeInfo* GetTypeInfo(void);
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};

Given this definition, one might then define a neighborhood using a single CPerson. Assuming
a function FullerBrushMan(CPerson&) must now be applied to each person in the
neighborhood, this could be implemented using a CTypeIterator as follows:

CPerson neighborhood("Moe", "123 Main St",
 new CPerson("Larry", "127 Main St",
 new CPerson("Curly", "131 Main St", 0)));
for (CTypeIterator<CPerson> house(Begin(neighborhood)); house; ++house) {
 FullerBrushMan(*house);
}

In this example, the data members visited by the iterator are of the same type as the top-level
aggregate object, since neighbor is an instance of CPerson. Thus, the first "member" visited is
the top-level object itself. This is not always the case however. The top-level object is only
included in the iteration when it is an instance of the type specified in the template argument
(CPerson in this case).

Page 34

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeConstIterator.html

All of the NCBI C++ Toolkit type iterators are recursive. Thus, since neighborhood has
CPerson data members, which in turn contain objects of type CPerson, all of the nested data
members will also be visited by the above iterator. More generally, given a hierarchically
structured object containing data elements of a given type nested several levels deep, the NCBI
C++ Toolkit type iterators effectively generate a "flat" list of all these elements.

It is not difficult to imagine situations where recursive iterators such as the CTypeIterator could
lead to infinite loops. An obvious example of this would be a doubly-linked list. For example,
suppose CPerson had both previous and next data members, where x->next->previous == x.
In this case, visiting x followed by x->next would lead back to x with no terminating condition.
To address this issue, the Begin() function accepts an optional second argument,
eDetectLoops. eDetectLoops is an enum value which, if included, specifies that the iterator
should detect and avoid infinite loops. The resulting iterator will be somewhat slower but can
be safely used on objects whose references might create loops.

Let's compare the syntax of this new iterator class to the standard iterators:

ContainerType<T> x;
for (ContainerType<T>::IteratorType i = x.begin(); i != x.end(); ++i)
for (CTypeIterator<T> i(Begin(ObjectName)); i; ++i)

The standard iterator begins by pointing to the first item in the container x.begin(), and with
each iteration, visits subsequent items until the end of the container x.end() is reached.
Similarly, the CTypeIterator begins by pointing to the first data member of ObjectName that
is of type T, and with each iteration, visits subsequent data members of type T until the end of
the top-level object is reached.

A lot of code actually uses = Begin(...) instead of (Begin(...)) to initialize iterators; although
the alternate syntax is somewhat more readable and often works, some compilers can mis-
handle it and give you link errors. As such, direct initialization as shown above generally works
better. Also, note that this issue only applies to construction; you should (and must) continue
to use = to reset existing iterators.

How are generic iterators such as these implemented? The Begin() expression returns an object
containing a pointer to the input object ObjectName, as well as a pointer to a CTypeInfo object
containing type information about that object. On each iteration, the ++ operator examines the
current type information to find the next data member which is of type T. The current object,
its type information, and the state of iteration is pushed onto a local stack, and the iterator is
then reset with a pointer to the next object found, and in turn, a pointer to its type information.
Each data member of type T (or derived from type T) must be capable of providing its own
type information as needed. This allows the iterator to recursively visit all data members of the
specified type at all levels of nesting.

More specifically, each object included in the iteration, as well as the initial argument to Begin
(), must have a statically implemented GetTypeInfo() class member function to provide the
needed type information. For example, all of the serializable objects generated by datatool in
the src/objects subtrees have GetTypeInfo() member functions. In order to apply type iterators
to user-defined classes (as in the above example), these classes must also make their type
information explicit. A set of macros described in the section on User-defined Type
Information are provided to simplify the implementation of the GetTypeInfo() methods for
user-defined classes. The example included at the end of this section (see Additional
Information) uses several of the C++ Toolkit type iterators and demonstrates how to apply
some of these macros.

Page 35

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDetectLoops
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Begin
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app

The CTypeConstIterator parallels the CTypeIterator, and is intended for use with const objects
(i.e. when you want to prohibit modifications to the objects you are iterating over). For const
iterators, the ConstBegin() function should be used in place of Begin().

Class hierarchies, embedded objects, and the NCBI C++ type iterators
As emphasized above, all of the objects visited by an iterator must have the GetTypeInfo()
member function defined in order for the iterators to work properly. For an iterator that visits
objects of type T, the type information provided by GetTypeInfo() is used to identify:

• data members of type T
• data members containing objects of type T
• data members derived from type T
• data members containing objects derived from type T

Explicit encoding of the class hierarchy via the GetTypeInfo() methods allows the user to
deploy a type iterator over a single specified type which may in practice include a set of types
via inheritance. The section Additional Information includes a simple example of this feature.
The preprocessor macros used in this example which support the encoding of hierarchical class
relations are described in the User-defined Type Information section. A further generalization
of this idea is implemented by the CTypesIterator described later.

CObjectIterator (*) and CObjectConstIterator (*)
Because the CObject class is so central to the Toolkit, a special iterator is also defined, which
can automatically distinguish CObjects from other class types. The syntax of a CObjectIterator
is:

for (CObjectIterator i(Begin(ObjectName)); i; ++i)

Note that there is no need to specify the object type to iterate over, as the type CObject is built
into the iterator itself. This iterator will recursively visit all CObjects contained or referenced
in ObjectName. The CObjectConstIterator is identical to the CObjectIterator but is designed
to operate on const elements and uses the ConstBegin() function.

User-defined classes that are derived from CObject can also be iterated over (assuming their
GetTypeInfo() methods have been implemented). In general however, care should be used in
applying this type of iterator, as not all of the NCBI C++ Toolkit classes derived from CObject
have implementations of the GetTypeInfo() method. All of the generated serializable objects
in include/objects do have a defined GetTypeInfo() member function however, and thus can
be iterated over using either a CObjectIterator or a CTypeIterator with an appropriate template
argument.

CStdTypeIterator (*) and CStdTypeConstIterator (*)
All of the type iterators described thus far require that each object visited must provide its own
type information. Hence, none of these can be applied to standard types such as int, float, double
or the STL type string. The CStdTypeIterator and CStdTypeConstIterator classes selectively
iterate over data members of a specified type. But for these iterators, the type must be a simple
C type (int, double, char*, etc.) or an STL type string. For example, to iterate over all the string
data members in a CPerson object, we could use:

for (CStdTypeIterator<string> i(Begin(neighborhood)); i; ++i) {
 cout << *i << ' ';
}

Page 36

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeConstIterator.html

The CStdTypeConstIterator is identical to the CStdTypeIterator but is designed to operate on
const elements and requires the ConstBegin() function.

For examples using CTypeIterator and CStdTypeIterator, see Code Sample 2 (ctypeiter.cpp)
and Code Sample 3 (ctypeiter.hpp).

CTypesIterator (*)
Sometimes it is necessary to iterate over a set of types contained inside an object. The
CTypesIterator, as its name suggests, is designed for this purpose. For example, suppose you
have loaded a gene sequence into memory as a CBioseq (named seq), and want to iterate over
all of its references to genes and organisms. The following sequence of statements defines an
iterator that will step through all of seq's data members (recursively), stopping only at
references to gene and organism citations:

CTypesIterator i;
CType<CGene_ref>::AddTo(i); // define the types to stop at
CType<COrg_ref>::AddTo(i);

for (i = Begin(seq); i; ++i) {

 if (CType<CGene_ref>::Match(i)) {
 CGene_ref* geneRef = CType<CGene_ref>::Get(i);
 ...
 }
 else if (CType<COrg_ref>::Match(i) {
 COrg_ref* orgRef = CType<COrg_ref>::Get(i);
 ...
 }
}

Here, CType is a helper template class that simplifies the syntax required to use the multiple
types iterator:

• CType<TypeName>::AddTo(i) specifies that iterator i should stop at type TypeName.
• CType<TypeName>::Match(i) returns true if the specified type TypeName is the type

currently pointed to by iterator i.
• CType<TypeName>::Get(i) retrieves the object currently pointed to by iterator iif

there is a type match to TypeName, and otherwise returns 0. In the event there is a type
match, the retrieved object is type cast to TypeName before it is returned.

The Begin() expression is as described for the above CTypeIterator and CTypeConstIterator
classes. The CTypesConstIterator is the const implementation of this type of iterator, and
requires the ConstBegin() function.

Context Filtering In Type Iterators
In addition to traversing objects of a specific type one might want to specify the structural
context in which such objects should appear. For example, you might want to iterate over string
data members, but only those called title. This could be done using context filtering. Such a
filter is a string with the format identical to the one used in Stack Path Hooks and is specified
as an additional parameter of a type iterator. So, for example, the declaration of a string data
member iterator with context filtering could look like this:

Page 37

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CTypesIterator
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCType.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTypesConstIterator

CStdTypeIterator<string> i(Begin(my_obj), "*.title")

Additional Information
The following example demonstrates how the class hierarchy determines which data members
will be included in a type iterator. The example uses five simple classes:

• Class CA contains a single int data member and is used as a target object type for the
type iterators demonstrated.

• class CB contains an auto_ptr to a CA object.
• Class CC is derived from CA and is used to demonstrate the usage of class hierarchy

information.
• Class CD contains an auto_ptr to a CC object, and, since it is derived from CObject,

can be used as the object pointed to by a CRef.
• Class CX contains both pointers-to and instances-of CA, CB, CC, and CD objects, and

is used as the argument to Begin() for the demonstrated type iterators.
The preprocessor macros used in this example implement the GetTypeInfo() methods for the
classes, and are described in the section on User-defined type information.

// Define a simple class to use as iterator's target objects
class CA
{
public:
 CA() : m_Data(0) {};
 CA(int n) : m_Data(n) {};
 static const CTypeInfo* GetTypeInfo(void);
 int m_Data;
};
// Define a class containing an auto_ptr to the target class
class CB
{
public:
 CB() : m_a(0) {};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a;
};
// define a subclass of the target class
class CC : public CA
{
public:
 CC() : CA(0){};
 CC(int n) : CA(n){};
 static const CTypeInfo* GetTypeInfo(void);
};

// define a class derived from CObject to use in a CRef
// this class also contains an auto_ptr to the target class
class CD : public CObject
{
public:
 CD() : m_c(0) {};

Page 38

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CC> m_c;
};
// This class will be the argument to the iterator. It contains 4
// instances of CA - directly, through pointers, and via inheritance
class CX
{
public:
 CX() : m_a(0), m_b(0), m_d(0) {};
 ~CX(){};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a; // auto_ptr to a CA
 CB *m_b; // pointer to an object containing a CA
 CC m_c; // instance of a subclass of CA
 CRef<CD> m_d; // CRef to an object containing an auto_ptr to CC
};
////////// Implement the GetTypeInfo() methods /////////
////////// (see User-defined type information) /////////
BEGIN_CLASS_INFO(CA)
{
 ADD_STD_MEMBER(m_Data);
 ADD_SUB_CLASS(CC);
}
END_CLASS_INFO

BEGIN_CLASS_INFO(CB)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
}
END_CLASS_INFO

BEGIN_DERIVED_CLASS_INFO(CC, CA)
{
}
END_DERIVED_CLASS_INFO

BEGIN_CLASS_INFO(CD)
{
 ADD_MEMBER(m_c, STL_auto_ptr, (CLASS, (CC)));
}
END_CLASS_INFO

BEGIN_CLASS_INFO(CX)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
 ADD_MEMBER(m_b, POINTER, (CLASS, (CB)));
 ADD_MEMBER(m_c, CLASS, (CC));

Page 39

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ADD_MEMBER(m_d, STL_CRef, (CLASS, (CD)));
}
END_CLASS_INFO

int main(int argc, char** argv)
{
 CB b;
 CD d;

 b.m_a.reset(new CA(2));
 d.m_c.reset(new CC(4));
 CX x;

 x.m_a.reset(new CA(1)); // auto_ptr to CA
 x.m_b = &b; // pointer to CB containing auto_ptr to CA
 x.m_c = *(new CC(3)); // instance of subclass of CA
 x.m_d = &d; // CRef to CD containing auto_ptr to CC

 cout << "Iterating over CA objects in x" << endl << endl;

 for (CTypeIterator<CA> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

 cout << "Iterating over CC objects in x" << endl << endl;

 for (CTypeIterator<CC> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

 cout << "Iterating over CObjects in x" << endl << endl;
 for (CObjectIterator i(Begin(x)); i; ++i) {
 const CD *tmp = dynamic_cast<const CD*>(&*i);
 cout << tmp->m_c->m_Data << endl;
 }
 return 0;
}

Figure 1 illustrates the paths traversed by CTypeIterator<CA> and CTypeIterator<CC>, where
both iterators are initialized with Begin(a). The data members visited by the iterator are
indicated by enclosing boxes. See Figure 1.

For additional examples of using the type iterators described in this section, see ctypeiter.cpp.

Processing Serial Data
Although this discussion focuses on ASN.1 and XML formatted data, the data structures and
tools described here have been designed to (potentially) support any formalized serial data
specification. Many of the tools and objects have open-ended abstract or template
implementations that can be instantiated differently to fit various specifications.

The following topics are discussed in this section
• Accessing the object header files and serialization libraries
• Reading and writing serial data

Page 40

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

• Reading and writing binary JSON data
• Determining Which Header Files to Include
• Determining Which Libraries to Link To

Accessing the object header files and serialization libraries
Reading and writing serialized data is implemented by an integrated set of streams, filters, and
object types. An application that reads encoded data files will require the object header files
and libraries which define how these serial streams of data should be loaded into memory. This
entails #include statements in your source files, as well as the associated library specifications
in your makefiles. The object header and implementation files are located in the include/
objects and src/objects subtrees of the C++ tree, respectively. The header and implementation
files for serialized streams and type information are in the include/serial and src/serial
directories.

If you have checked out the objects directories, but not explicitly run the datatool code
generator, then you will find that your include/objects subdirectories are (almost) empty, and
the source subdirectories contain only makefiles and ASN.1 specifications. These makefiles
and ASN.1 specifications can be used to build your own copies of the objects' header and
implementation files, using make all_r (if you configured using the --with-objects flag), or
running datatool explicitly.

However, building your own local copies of these header and implementation files is neither
necessary nor recommended, as it is simpler to use the pre-generated header files and prebuilt
libraries. The pre-built header and implementation files can be found in $NCBI/c++/include/
objects/ and $NCBI/c++/src/objects/, respectively. Assuming your makefile defines an include
path to $NCBI/c++/include, selected object header files such as Date.hpp, can be included as:

#include <objects/general/Date.hpp>

This header file (along with its implementations in the accompanying src directory) was
generated by datatool using the specifications from src/objects/general/general.asn. In order to
use the classes defined in the objects directories, your source code should begin with the
statements:

USING_NCBI_SCOPE;
using namespace objects;

All of the objects' header and implementation files are generated by datatool, as specified in
the ASN.1 specification files. The resulting object definitions however, are not in any way
dependent on ASN.1 format, as they simply specify the in-memory representation of the
defined data types. Accordingly, the objects themselves can be used to read, interpret, and write
any type of serialized data. Format specializations on the input stream are implemented via
CObjectIStream objects, which extract the required tags and values from the input data
according to the format specified. Similarly, Format specializations on an output stream are
implemented via CObjectOStream objects.

Reading and writing serial data
Let's consider a program xml2asn.cpp that translates an XML data file containing an object of
type Biostruc, to ASN.1 text and binary formats. In main(), we begin by initializing the
diagnostic stream to write errors to a local file called xml2asn.log. (Exception handling,
program tracing, and error logging are described in the Diagnostic Streams section).

Page 41

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general/Date.hpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general/general.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1/mmdb1.asn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

An instance of the CTestAsn class is then created, and its member function AppMain() is
invoked. This function in turn calls CTestAsn::Run(). The first three lines of code there define
the XML input and ASN.1 output streams, using auto_ptr, to ensure automatic destruction of
these objects.

Each stream is associated with data serialization mechanisms appropriate to the
ESerialDataFormat provided to the constructor:

enum ESerialDataFormat {
 eSerial_None = 0,
 eSerial_AsnText = 1, /// ASN.1 text
 eSerial_AsnBinary = 2, /// ASN.1 binary
 eSerial_Xml = 3, /// XML
 eSerial_Json = 4 /// JSON
};

CObjectIStream and CObjectOStream are base classes which provide generic interfaces
between the specific type information of a serializable object and an I/O stream. The object
stream classes that will actually be instantiated by this application, CObjectIStreamXml,
CObjectOStreamAsn, and CObjectOStreamAsnBinary, are descendants of these base classes.

Finally, a variable for the object type that will be generated from the input stream (in this case
a CBiostruc) is defined, and the CObject[I/O]Stream operators "<<" and ">>" are used to read
and write the serialized data to and from the object. (Note that it is not possible to simply "pass
the data through", from the input stream to the output stream, using a construct like: *inObject
>> *outObject). The CObject[I/O]Streams know nothing about the structure of the specific
object - they have knowledge only of the serialization format (text ASN, binary ASN, XML,
etc.). In contrast, the CBiostruc knows nothing about I/O and serialization formats, but it
contains explicit type information about itself. Thus, the CObject[I/O]Streams can apply their
specialized serialization methods to the data members of CBiostruc using the type
information associated with that object's class.

Reading and writing binary JSON data
JSON is a purely text format - that is, all data values are string representations. Therefore,
binary data cannot be serialized or deserialized as JSON without specifying an encoding.
Furthermore, the encoding choice is not automatically stored with the encoded data, so the (de)
serialization process must explicitly select an encoding.

The following code shows how to read binary JSON data:

// Create JSON data with a Base64 encoded binary field.
char jsonb[] = "{ \"Seq_data\": { \"ncbi2na\": \"ASNFZ4mrze8=\" } }";
CNcbiIstrstream iss(jsonb);

// Read the JSON data into a Seq-data object, using Base64 encoding.
CObjectIStreamJson ijson;
ijson.Open(iss);
CSeq_data mySeq_data;
ijson.SetBinaryDataFormat(CObjectIStreamJson::eString_Base64);
ijson >> mySeq_data;

The following code shows how to write binary JSON data:

Page 42

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html

// Use ASN.1 data to populate a Seq-data object.
char asn[] = "Seq-data ::= ncbi2na '0123456789ABCDEF'H";
CNcbiIstrstream iss(asn);
auto_ptr<CObjectIStream> in(CObjectIStream::Open(eSerial_AsnText, iss));
CSeq_data mySeq_data;
*in >> mySeq_data;

// Write the Seq-data object in JSON format with Base64 binary encoding.
CObjectOStreamJson ojson(cout, false);
ojson.SetBinaryDataFormat(CObjectOStreamJson::eString_Base64);
ojson << mySeq_data;

Determining Which Header Files to Include
As always, we include the corelib header files, ncbistd.hpp and ncbiapp.hpp. In addition, the
serial header files that define the generic CObject[IO]Stream objects are included, along with
serial.hpp, which defines generalized serialization mechanisms including the insertion (<<)
and extraction (>>) operators. Finally, we need to include the header file for the object type
we will be using.

There are two source browsers that can be used to locate the appropriate header file for a
particular object type. Object class names in the NCBI C++ Toolkit begin with the letter "C".
Using the class hierarchy browser, we find CBiostruc, derived from CBiostruc_Base, which
is in turn derived from CObject. Following the CBiostruc link, we can then use the locate button
to move to the LXR source code navigator, and there, find the name of the header file. In this
case, we find CBiostruc.hpp is located in include/objects/mmdb1. Alternatively, if we know
the name of the C++ class, the source code navigator's identifier search tool can be used directly.
In summary, the following #include statements appear at the top of xml2asn.cpp:

#include <corelib/ncbiapp.hpp>
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <objects/mmdb1/Biostruc.hpp>

Determining Which Libraries to Link To
Determining which libraries must be linked to requires a bit more work and may involve some
trial and error. The list of available libraries currently includes:

access biblio cdd featdef general medlars medline mmdb1 mmdb2 mmdb3 ncbimime objprt
proj pub pubmed seq seqalign seqblock seqcode seqfeat seqloc seqres seqset submit xcgi
xconnect xfcgi xhtml xncbi xser

It should be clear that we will need to link to the core library, xncbi, as well as to the serial
library, xser. In addition, we will need to link to whatever object libraries are entailed by using
a CBiostruc object. Minimally, one would expect to link to the mmdb libraries. This in itself
is insufficient however, as the CBiostruc class embeds other types of objects, including
PubMed citations, features, and sequences, which in turn embed additional objects such as
Date. The makefile for xml2asn.cpp, Makefile.xml2asn.app lists the libraries required for
linking in the make variable LIB.

###
This file was originally generated from by shell script "new_project.sh"

Page 43

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html

###
APP = xml2asn
OBJ = xml2asn
LIB = mmdb1 mmdb2 mmdb3 seqloc seqfeat pub medline biblio general xser xncbi
LIBS = $(NCBI_C_LIBPATH) -lncbi $(ORIG_LIBS)

See also the example program, asn2asn.cpp which demonstrates more generalized translation
of Seq-entry and Bioseq-set (defined in seqset.asn).

Note: Two online tools are available to help determine which libraries to link with. See the
FAQ for details.

User-defined type information
The following topics are discussed in this section:

• Introduction
• Installing a GetTypeInfo() function: the BEGIN_/END_macros
• Specifying internal structure and class inheritance: the ADD_ macros

Introduction
Object type information, as it is used in the NCBI C++ Toolkit, is defined in the section on
Runtime Object Type Information. As described there, all of the classes and constructs defined
in the serial include and src directories have a static implementation of a GetTypeInfo() function
that yields a CTypeInfo for the object of interest. In this section, we describe how type
information can also be generated and accessed for user-defined types. We begin with a review
of some of the basic notions introduced in the previous discussion.

The type information for a class is stored outside any instances of that class, in a statically
created CTypeInfo object. A class's type information includes the class layout, inheritance
relations, external alias, and various other attributes that are independent of specific instances.
In addition, the type information object provides an interface to the class's data members.

Limited type information is also available for primitive data types, enumerations, containers,
and pointers. The type information for a primitive type specifies that it is an int, float, or char,
etc., and whether or not that element is signed. Enumerations are a special kind of primitive
type, whose type information specifies its enumeration values and named elements. Type
information for containers can specify both the type of container and the type of elements. The
type information for a pointer provides convenient methods of access to the type information
for the type pointed to.

For all types, the type information is encoded in a static CTypeInfo object, which is then
accessed by all instances of a given type using a GetTypeInfo() function. For class types, this
function is implemented as a static method for the class. For non class types, GetTypeInfoXxx
() is implemented as a static global function, where Xxx is a unique suffix generated from the
type's name. With the first invocation of GetTypeInfo() for a given type, the static CTypeInfo
object is created, which then persists (local to the function GetTypeInfo()) throughout
execution. Subsequent calls to GetTypeInfo() simply return a pointer to this statically created
local object.

In order to make type information about user-defined classes accessible to your application,
the user-defined classes must also implement a static GetTypeInfo() method. A set of

Page 44

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset/seqset.asn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo

preprocessor macros is available, which greatly simplifies this effort. A pre-requisite to using
these macros however, is that the class definition must include the following line:

DECLARE_INTERNAL_TYPE_INFO();

This pre-processor macro will generate the following in-line statement in the class definition:

static const NCBI_NS_NCBI::CTypeInfo* GetTypeInfo(void);

As with class objects, there must be some means of declaring the type information function
for an enumeration prior to using the macros which implement that function. Given an
enumeration named EMyEnum, DECLARE_ENUM_INFO(EMyEnum) will generate the
following declaration:

const CEnumeratedTypeValues* GetTypeInfo_enum_EMyEnum(void);

The DECLARE_ENUM_INFO() macro should appear in the header file where the
enumeration is defined, immediately following the definition. The
DECLARE_INTERNAL_ENUM_INFO macro is intended for usage with internal class
definitions, as in:

class ClassWithEnum {
 enum EMyEnum {
 ...
 };

 DECLARE_INTERNAL_ENUM_INFO(EMyEnum);
 ...
};

The C++ Toolkit also allows one to provide type information for legacy C style struct and
choice elements defined in the C Toolkit. The mechanisms used to implement this are
mentioned but not described in detail here, as it is not likely that newly-defined types will be
in these categories.

Installing a GetTypeInfo() function: the BEGIN_/END_macros
Several pre-processor macros are available for the installation of the GetTypeInfo() functions
for different types. Table 2 lists six BEGIN_NAMED_*_INFO macros, along with a
description of the type of object each can be applied to and its expected arguments. Each macro
in Table 2 has a corresponding END_*_INFO macro definition.

The first four macros in Table 2 apply to C++ objects. The
DECLARE_INTERNAL_TYPE_INFO() macro must appear in the class definition's public
section. These macros take two string arguments:

• an external alias for the type, and
• the internal C++ symbolic class name

The next two macros implement global, uniquely named functions which provide access to
type information for C++ enumerations; the resulting functions are named
GetTypeInfo_enum_[EnumName]. The DECLARE_ENUM_INFO() or
DECLARE_ENUM_INFO_IN() macro should be used in these cases to declare the
GetTypeInfo*() functions.

Page 45

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The usage of these six macros generally takes the following form:

BEGIN_*_INFO(ClassName)
{
 ADD_*(MemberName1);
 ADD_*(MemberName2);
 ...
}
END_*_INFO

That is, the BEGIN/END macros are used to generate the function's signature and enclosing
block, and various ADD_* macros are applied to add information about internal members and
class relations.

List of the BEGIN_/END_ macros
• BEGIN_NAMED_CLASS_INFO (ClassAlias, ClassName)
• BEGIN_CLASS_INFO (ClassName)

These macros should be used on classes that do not contain any pure virtual functions. For
example, the GetTypeInfo() method for the CPerson class (used in the chapter on iterators) can
be implemented as:

BEGIN_NAMED_CLASS_INFO("CPerson", CPerson)
{
 ADD_NAMED_STD_MEMBER("m_Name", m_Name);
 ADD_NAMED_STD_MEMBER("m_Addr", m_Addr);
 ADD_NAMED_MEMBER("m_NextDoor", m_NextDoor, POINTER, (CLASS, (CPerson)));
}
END_CLASS_INFO

or, equivalently, as:

BEGIN_CLASS_INFO(CPerson)
{
 ADD_STD_MEMBER(m_Name);
 ADD_STD_MEMBER(m_Addr);
 ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)));
}
END_CLASS_INFO

Here, the CPerson class has two string data members, m_Name and m_Addr, as well as a
pointer to an object of the same type (CPerson*). All built-in C++ types such as int, float, string
etc., use the ADD_NAMED_STD_MEMBER or ADD_STD_MEMBER macros. These and
other macros used to add members are defined in Specifying internal structure and class
inheritance: the ADD_ macros and Table 3.

• BEGIN_NAMED_ABSTRACT_CLASS_INFO(ClassAlias, ClassName)
• BEGIN_ABSTRACT_CLASS_INFO(ClassName)

These macros must be used on abstract base classes which contain pure virtual functions.
Because these abstract classes cannot be instantiated, special handling is required in order to
install their static GetTypeInfo() methods.

Page 46

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ABSTRACT_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ABSTRACT_CLASS_INFO

• BEGIN_NAMED_DERIVED_CLASS_INFO (ClassAlias, ClassName,
BaseClassName)

• BEGIN_DERIVED_CLASS_INFO (ClassName, BaseClassName)
These macros should be used on derived subclasses whose parent classes also have the
GetTypeInfo() method implemented. Data members inherited from parent classes should not
be included in the derived class type information.

BEGIN_DERIVED_CLASS_INFO(CA, CBase)
{
 // ... data members in CA not inherited from CBase
}
END_DERIVED_CLASS_INFO

NOTE:The type information for classes derived directly from CObject does not however,
follow this protocol. In this special case, although the class is derived from CObject, you should
not use the DERIVED_CLASS macros to implement GetTypeInfo(), but instead use the usual
BEGIN_CLASS_INFO macro. CObject's have a slightly different interface to their type
information (see CObjectGetTypeInfo), and apply these macros differently.

• BEGIN_NAMED_CHOICE_INFO (ClassAlias, ClassName)
• BEGIN_CHOICE_INFO (ClassName)

These macros install GetTypeInfo() for C++choice objects, which are implemented as C++
classes. See Choice objects in the C++ Toolkit for a description of C++ choice objects. Each
of the choice variants occurs as a data member in the class, and the macros used to add choice
variants (ADD_NAMED_*_CHOICE_VARIANT) are used similarly to those which add data
members to classes (see discussion of the ADD* macros below).

• BEGIN_NAMED_ENUM_INFO (EnumAlias, EnumName, IsInteger)
• BEGIN_ENUM_INFO (EnumName, IsInteger)

In addition to the two arguments used by the BEGIN_*_INFO macros for classes, a Boolean
argument (IsInteger) indicates whether or not the enumeration includes arbitrary integer values
or only those explicitly specified.

• BEGIN_NAMED_ENUM_IN_INFO (EnumAlias, CppContext, EnumName,
IsInteger)

• BEGIN_ENUM_IN_INFO (CppContext, EnumName, IsInteger)
These macros also implement the type information functions for C++ enumerations --but in
this case, the enumeration is defined outside the scope where the macro is applied, so a context
argument is required. This new argument, CppContext, specifies the C++ class name or
external namespace where the enumeration is defined.

Again, when using the above macros to install type information, the corresponding class
definitions must include a declaration of the static class member function GetTypeInfo() in
the class's public section. The DECLARE_INTERNAL_TYPE_INFO() macro is provided to
ensure that the declaration of this method is correct. Similarly, the
DECLARE_INTERNAL_ENUM_INFO and DECLARE_ENUM_INFO macros should be
used in the header files where enumerations are defined. The DECLARE_ASN_TYPE_INFO
and DECLARE_ASN_CHOICE_INFO macros can be used to declare the type information
functions for C-style structs and choice nodes.

Page 47

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectGetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CHOICE_INFO%20class=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CHOICE_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ADD_NAMED_CHOICE_VARIANT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_IN_INFO

Specifying internal structure and class inheritance: the ADD_ macros
Information about internal class structure and inheritance is specified using the ADD_* macros
(see Table 3). Again, each macro has both a "named" and "unnamed" implementation. The
arguments to all of the ADD_NAMED_* macros begin with the external alias and C++ name
of the item to be added.

The ADD_* macros that take only an alias and a name require that the type being added must
be either a built-in type or a type defined by the name argument. When adding a CRef data
member to a class or choice object however, the class referenced by the CRef must be made
explicit with the RefClass argument, which is the C++ class name for the type pointed to.

Similarly, when adding an enumerated data member to a class, the enumeration itself must be
explicitly named. For example, if class CMyClass contains a data member m_MyEnumVal of
type EMyEnum, then the BEGIN_NAMED_CLASS_INFO macro for CMyClass should
contain the statement:

ADD_ENUM_MEMBER (m_MyEnumVal, EMyEnum);

or, equivalently:

ADD_NAMED_ENUM_MEMBER ("m_MyEnumVal", m_MyEnumVal, EMyEnum);

or, to define a "custom" (non-default) external alias:

ADD_NAMED_ENUM_MEMBER ("m_CustomAlias", m_MyEnumVal, EMyEnum);

Here, EMyEnum is defined in the same namespace and scope as CMyClass. Alternatively, if
the enumeration is defined in a different class or namespace (and therefore, then the
ADD_ENUM_IN_MEMBER macro must be used:

ADD_ENUM_IN_MEMBER (m_MyEnumVal, COtherClassName::, EMyEnum);

In this example, EMyEnum is defined in a class named COtherClassName. The CppContext
argument (defined here as COtherClassName::) acts as a scope operator, and can also be used
to specify an alternative namespace. The ADD_NAMED_ENUM_CHOICE_VARIANT and
ADD_NAMED_ENUM_IN_CHOICE_VARIANT macros are used similarly to provide
information about enumerated choice options. The ADD_ENUM_VALUE macro is used to
add enumerated values to the enumeration itself, as demonstrated in the above example of the
BEGIN_NAMED_ENUM_INFO macro.

The most complex macros by far are those which use the TypeMacro and TypeMacroArgs
arguments: ADD(_NAMED)_MEMBER and ADD(_NAMED)_CHOICE_VARIANT. These
macros are more open-ended and allow for more complex specifications. We have already seen
one example of using a macro of this type, in the implementation of the GetTypeInfo() method
for CPerson:

ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)));

The ADD_MEMBER and ADD_CHOICE_VARIANT macros always take at least two
arguments:

the internal member (variant) name

Page 48

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the definition of the member's (variant's) type

Depending on the (second) TypeMacro argument, additional arguments may or may not be
needed. In this example, the TypeMacro is POINTER, which does require additional
arguments. The TypeMacroArgs here specify that m_NextDoor is a pointer to a class type
whose C++ name is CPerson.

More generally, the remaining arguments depend on the value of TypeMacro, as these
parameters complete the type definition. The possible strings which can occur as TypeMacro,
along with the additional arguments required for that type, are given in Table 4.

The ADD_MEMBER macro generates a call to the corresponding ADD_NAMED_MEMBER
macro as follows:

#define ADD_MEMBER(MemberName,TypeMacro,TypeMacroArgs) \
 ADD_NAMED_MEMBER(#MemberName,MemberName,TypeMacro,TypeMacroArgs)

Some examples of using the ADD_MEMBER macro are:

ADD_MEMBER(m_X);
ADD_MEMBER(m_A, STL_auto_ptr, (CLASS, (ClassName)));
ADD_MEMBER(m_B, STL_CHAR_vector, (char));
ADD_MEMBER(m_C, STL_vector, (STD, (int)));
ADD_MEMBER(m_D, STL_list, (CLASS, (ClassName)));
ADD_MEMBER(m_E, STL_list, (POINTER, (CLASS, (ClassName))));
ADD_MEMBER(m_F, STL_map, (STD, (long), STD, (string)));

Similarly, the ADD_CHOICE_VARIANT macro generates a call to the corresponding
ADD_NAMED_CHOICE_VARIANT macro. These macros add type information for the
choice object's variants.

Runtime Object Type Information
The following topics are discussed in this section:

• Introduction
• Motivation
• Object Information Classes
• Usage of object type information

Introduction
Run-time information about data types is necessary in several contexts, including:

1 When reading, writing, and processing serialized data, where runtime information
about a type's internal structure is needed.

2 When reading from an arbitrary data source, where data members' external aliases
must be used to locate the corresponding class data members (e.g.MyXxx may be
aliased as my-xxx in the input data file).

3 When using a generalized C++ type iterator to traverse the data members of an object.
4 When accessing the object type information per se (without regard to any particular

object instance), e.g. to dump it to a file as ASN.1 or DTD specifications (not data).

Page 49

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

In the first three cases above, it is necessary to have both the object itself as well as its runtime
type information. This is because in these contexts, the object is usually passed inside a generic
function, as a pointer to its most base parent type CObject. The runtime type information is
needed here, as there is no other way to ascertain the actual object's data members. In addition
to providing this information, a runtime type information object provides an interface for
accessing and modifying these data members.

In case (4) above, the type information is used independent of any actual object instances.

Type and Object specific info
The NCBI C++ Toolkit uses two classes to support these requirements:

• Type information classes (base class CTypeInfo) are intended for internal usage only,
and they encode information about a type, devoid of any instances of that type. This
information includes the class layout, inheritance relations, external alias, and various
other attributes such as size, which are independent of specific instances. Each data
member of a class also has its own type information. Thus, in addition to providing
information relevant to the member's occurrence in the class (e.g. the member name
and offset), the type information for a class must also provide access to the type
information for each of its members. Limited type information is also available for
types other than classes, such as primitive data types, enumerations, containers, and
pointers. For example, the type information for a primitive type specifies that it is an
int, float, or char, etc., and whether or not that element is signed. Enumerations are a
special kind of primitive type, whose type information specifies its enumeration values
and named elements. Type information for containers specifies both the type of
container and the type of elements that it holds.

• Object information classes (base class CObjectTypeInfo) include a pointer to the type
information as well as a pointer to the object instance, and provide a safe interface to
that object. In situations where type information is used independent of any concrete
object, the object information class simply serves as a wrapper to a type information
object. Where access to an object instance is required, the object pointer provides direct
access to the correctly type-cast instance, and the interface provides methods to access
and/or modify the object itself or members of that object.

The C++ Toolkit stores the type information outside any instances of that type, in a statically
created CTypeInfo object. For class objects, this CTypeInfo object can be accessed by all
instances of the class via a static GetTypeInfo() class method. Similarly, for primitive types
and other constructs that have no way of associating methods with them per se, a static globally
defined GetTypeInfoXxx() function is used to access a static CTypeInfo object. (The Xxx suffix
is used here to indicate that a globally unique name is generated for the function).

All of the automatically generated classes and constructs defined in the C++ Toolkit's
objects/ directory already have static GetTypeInfo() functions implemented for them. In order
to make type information about user-defined classes and elements also accessible, you will
need to implement static GetTypeInfo() functions for these constructs. A number of pre-
processor macros are available to support this activity, and are described in the section on
User-defined Type Information.

Type information is often needed when the object itself has been passed anonymously, or as a
pointer to its parent class. In this case, it is not possible to invoke the GetTypeInfo() method
directly, as the object's exact type is unknown. Using a <static_cast> operator to enable the
member function is also unsafe, as it may open the door to incorrectly associating an object's
pointer with the wrong type information. For these reasons, the CTypeInfo class is intended

Page 50

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects

for internal usage only, and it is the CObjectTypeInfo classes that provide a more safe and
friendly user interface to type information.

Motivation
We use a simple example to help motivate the use of this type and object information model.
Let us suppose that we would like to have a generic function LoadObject(), which can populate
an object using data read from a flat file. For example, we might like to have:

bool LoadObject(Object& myObj, istream& is);

where myObj is an instance of some subclass of Object. Assuming that the text in the file is
of the form:

MemberName1 value1
MemberName5 value5
MemberName2 value2
:

we would like to find the corresponding data member in myObj for each MemberName, and
set that data member's value accordingly. Unfortunately, myObj cannot directly supply any
useful type information, as the member names we seek are for a specific subclass of Object.
Now suppose that we have an appropriate type information object available for myObj, and
consider how this might be used:

bool LoadObject(TypeInfo& info, Object& myObj, istream& is)
{
 string myName, myValue;

 while (!is.eof()) {
 is >> myName >> myValue;
 void* member = FindMember(info, myObj, myName);
 AssignValue(member, myValue);
 }
}

Here, we assume that our type information object, info, stores information about the memory
offset of each data member in myObj, and that such information can be retrieved using some
sort of identifying member name such as myName. This is not too difficult to imagine, and
indeed, this is exactly the type of information and facility provided by the C++ Toolkit's type
information classes. The FindMember() function just needs to return a void pointer to the
appropriate location in memory. The AssignValue() function presents a much greater challenge
however, as its two sole arguments are a void pointer and a string. This would be fine if the
data member was indeed a void pointer, and a string value was acceptable. In general this is
not the case, and stronger methods are clearly needed.

In particular, for each data member encountered, we need to retrieve the type of that member
as well as its location in memory, so as to process myValue appropriately before assigning it.
In addition, we need safer mechanisms for making such "untyped" assignments. Ideally, we
would like a FindMember() function that returns a correctly cast pointer to that data member,
along with its associated type information. This is what the object information classes provide
- a pointer to the object instance as well as a pointer to its static type information. The interface

Page 51

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

to the object information class also provides a number of methods such as GetClassMember
(), GetTypeFamily(), SetPrimitiveValue(), etc., to support the type of activity described above.

Object Information Classes
The following topics are discussed in this section:

• CObjectTypeInfo (*)
• CConstObjectInfo (*)
• CObjectInfo (*)

CObjectTypeInfo (*)
This is the base class for all object information classes. It is intended for usage where there is
no concrete object being referenced, and all that is required is access to the type information.
A CObjectTypeInfo contains a pointer to a low-level CTypeInfo object, and functions as a
user-friendly wrapper class.

The constructor for CObjectTypeInfo takes a pointer to a const CTypeInfo object as its single
argument. This is precisely what is returned by all of the static GetTypeInfo() functions. Thus,
to create a CObjectTypeInfo for the CBioseq class - without reference to any particular instance
of CBioseq - one might use:

CObjectTypeInfo objInfo(CBioseq::GetTypeInfo());

One of the most important methods provided by the CObjectTypeInfo class interface is
GetTypeFamily(), which returns an enumerated value indicating the type family for the object
of interest. Five type families are defined by the ETypeFamily enumeration:

ETypeFamily GetTypeFamily(void) const;
 enum ETypeFamily {
 eTypeFamilyPrimitive,
 eTypeFamilyClass,
 eTypeFamilyChoice,
 eTypeFamilyContainer,
 eTypeFamilyPointer
};

Different queries become appropriate depending on the ETypeFamily of the object. For
example, if the object is a container, one might need to determine the type of container (e.g.
whether it is a list, map etc.), and the type of element. Similarly, if an object is a primitive type
(e.g. int, float, string, etc.), an appropriate query becomes what the value type is, and in the
case of integer-valued types, whether or not it is signed. Finally, in the case of more complex
objects such as class and choice objects, access to the type information for the individual data
members and choice variants is needed. The following methods are included in the
CObjectTypeInfo interface for these purposes:

For objects with family type eTypeFamilyPrimitive:

EPrimitiveValueType GetPrimitiveValueType(void) const;
bool IsPrimitiveValueSigned(void) const;

For objects with family type eTypeFamilyClass:

Page 52

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ETypeFamily

CMemberIterator BeginMembers(void) const;
CMemberIterator FindMember(const string& memberName) const;
CMemberIterator FindMemberByTag(int memberTag) const;

For objects with family type eTypeFamilyChoice:

CVariantIterator BeginVariants(void) const;
CVariantIterator FindVariant(const string& memberName) const;
CVariantIterator FindVariantByTag(int memberTag) const;

For objects with family type eTypeFamilyContainer:

EContainerType GetContainerType(void) const;
CObjectTypeInfo GetElementType(void) const;

For objects with family type eTypeFamilyPointer:

CObjectTypeInfo GetPointedType(void) const;

The two additional enumerations referred to here, EContainerType and
EPrimitiveValueType, are defined, along with ETypeFamily, in include/serial/serialdef.hpp.

Different iterator classes are used for iterating over class data members versus choice variant
types. Thus, if the object of interest is a C++ class object, then access to the type information
for its members can be gained using a CObjectTypeInfo::CMemberIterator. The
BeginMembers() method returns a CMemberIterator pointing to the first data member in the
class; the FindMember*() methods return a CMemberIterator pointing to a data member whose
name or tag matches the input argument. The CMemberIterator class is a forward iterator whose
operators are defined as follows:

• the ++ operator increments the iterator (makes it point to the next class member)
• the () operator tests that the iterator has not exceeded the legitimate range
• the * dereferencing operator returns a CObjectTypeInfo for the data member the

iterator currently points to
Similarly, the BeginVariants() and FindVariant() methods allow iteration over the choice
variant data types for a choice class, and the dereferencing operation yields a CObjectTypeInfo
object for the choice variant currently pointed to by the iterator.

CConstObjectInfo (*)
The CConstObjectInfo (derived from CObjectTypeInfo) adds an interface to access the
particular instance of an object (in addition to the interface inherited from CObjectTypeInfo,
which provides access to type information only). It is intended for usage with const instances
of the object of interest, and therefore the interface does not permit any modifications to the
object. The constructor for CConstObjectInfo takes two arguments:

CConstObjectInfo(const void* instancePtr, const CTypeInfo* typeinfoPtr);

(Alternatively, the constructor can be invoked with a single STL pair containing these two
objects.)

Page 53

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EContainerType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EPrimitiveValueType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serialdef.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConstObjectInfo.html

Each CConstObjectInfo contains a pointer to the object's type information as well as a pointer
to an instance of the object. The existence or validity of this instance can be checked using any
of the following CConstObjectInfo methods and operators:

• bool Valid(void) const;
• operator bool(void) const;
• bool operator!(void) const;

For primitive type objects, the CConstObjectInfo interface provides access to the currently
assigned value using GetPrimitiveValueXxx(). Here, Xxx may be Bool, Char, Long, ULong,
Double, String, ValueString, or OctetString. In general, to get a primitive value, one first
applies a switch statement to the value returned by GetPrimitiveValueType(), and then calls
the appropriate GetPrimitiveValueXxx() method depending on the branch followed, e.g.:

switch (obj.GetPrimitiveValueType()) {
case ePrimitiveValueBool:
 bool b = obj.GetPrimitiveValueBool();
 break;

case ePrimitiveValueInteger:
 if (obj.IsPrimitiveValueSigned()) {
 long l = obj.GetPrimitiveValueLong();
 } else {
 unsigned long ul = obj.GetPrimitiveValueULong();
 }
 break;
 //... etc.
}

Member iterator methods are also defined in the CConstObjectInfo class, with a similar
interface to that found in the CObjectTypeInfo class. In this case however, the dereferencing
operators return a CConstObjectInfo object - not a CObjectTypeInfo object - for the current
member. For C++class objects, these member functions are:

• CMemberIterator BeginMembers(void) const;
• CMemberIterator FindClassMember(const string& memberName) const;
• CMemberIterator FindClassMemberByTag(int memberTag) const;

For C++ choice objects, only one variant is ever selected, and only that choice variant is
instantiated. As it does not make sense to define a CConstObjectInfo iterator for uninstantiated
variants, the method GetCurrentChoiceVariant() is provided instead. The dereferencing
operator (*) can be applied to the object returned by this method to obtain a CConstObjectInfo
for the variant. Of course, type information for unselected variants can still be accessed using
the CObjectTypeInfo methods.

The CConstObjectInfo class also defines an element iterator for container type objects.
CConstObjectInfo::CElementIterator is a forward iterator whose interface includes increment
and testing operators. Dereferencing is implemented by the iterator's GetElement() method,
which returns a CConstObjectInfo for the element currently pointed to by the iterator.

Finally, for pointer type objects, the type returned by the method GetPointedObject() is also a
CConstObjectInfo for the object - not just a CObjectTypeInfo.

Page 54

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CObjectInfo (*)
The CObjectInfo class is in turn derived from CConstObjectInfo, and is intended for usage
with mutable instances of the object of interest. In addition to all of the methods inherited from
the parent class, the interface to this class also provides methods that allow modification of the
object itself or its data members.

For primitive type objects, a set of SetPrimitiveValueXxx() methods are available,
complimentary to the GetPrimitiveValueXxx() methods described above. Methods that return
member iterator objects are again reimplemented, and the de-referencing operators now return
a CObjectInfo object for that data member. As the CObjectInfo now points to a mutable object,
these iterators can be used to set values for the data member. Similarly,
GetCurrentChoiceVariant() now returns a CObjectInfo, as does
CObjectInfo::CElementIterator::GetElement().

Usage of object type information
We can now reconsider how our LoadObject() function might be implemented using the
CObjectInfo class:

bool LoadObject(CObjectInfo& info, CNcbiIStream& is)
{
 string alias, myValue;

 while (!is.eof()) {
 is >> alias >> myValue;

 CObjectInfo dataMember(*info.FindClassMember(alias));
 if (!dataMember) {
 ERR_POST_X(1, "Couldn't find member named:" << alias);
 }
 SetValue(dataMember, myValue);
 }
}

Here, info contains pointers to the CObject itself as well as to its associated CTypeInfo object.
For each member alias read from the file, we apply FindClassMember(alias), and dereference
the returned iterator to retrieve a CObjectInfo object for that member. We then use the operator
() to verify that the member was located, and if so, use the member's CObjectInfo to set a value
in the function SetValue():

void SetValue(const CObjectInfo& obj, const string value)
{
 if (obj.GetTypeFamily() == eTypeFamilyPrimitive) {

 switch (obj.GetPrimitiveValueType()) {

 case ePrimitiveValueBool:
 obj.SetPrimitiveValueBool (atoi (value.c_str()));
 break;

 case ePrimitiveValueChar:
 obj.SetPrimitiveValueChar (value.c_str()[0]);

Page 55

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectInfo.html

 break;

 //... etc
 }
 } else {
 ERR_POST_X(2, "Attempt to assign non-primitive from string:" << value);
 }
}

In this example, SetValue() can only assign primitive types. More generally however, the
CObjectInfo class allows the assignment of more complex types that are simply not
implemented here. Note also that the arguments to SetValue() are const, even though the
function does modify the value of the data instance pointed to. In particular, the type const
CObjectInfo should not be confused with the type CConstObjectInfo. The former specifies that
object information construct is non-mutable, although the instance it points to can be modified.
The latter specifies that the instance itself is non-mutable.

In addition to user-specific applications of the type demonstrated in this example, the generic
implementations of the C++ type iterators and the CObject[IO]Streamclass methods provide
excellent examples of how runtime object type information can be deployed.

As a final example of how type information might be used, we consider an application whose
simple task is to translate a data file on an input stream to a different format on an output stream.
One important use of the object classes defined in include/objects is the hooks and parsing
mechanisms available to applications utilizing CObject[IO]Streams. The stream objects
specialize in different formats (such as XML or ASN.1), and must work in concert with these
type-specific object classes to interpret or generate serialized data. In some cases however, the
dynamic memory allocation required for large objects may be substantial, and it is preferable
to avoid actually instantiating a whole object all at once.

Instead, it is possible to use the CObjectStreamCopier class, described in CObject[IO]
Streams. Briefly, this class holds two CObject[IO]Stream data members pointing to the input
and output streams, and a set of Copy methods which take a CTypeInfo argument. Using this
class, it is easy to translate files between different formats; for example:

auto_ptr<CObjectIStream> in(CObjectIStream::Open("mydata.xml",eSerial_Xml));
auto_ptr<CObjectOStream> out(CObjectOStream::Open
("mydata.asn",eSerial_AsnBinary));
CObjectStreamCopier copier(*in, *out);
copier.Copy (CBioseq_set::GetTypeInfo());

copies a CBioseq_set encoded in XML to a new file, reformatted in ASN.1 binary format.

Choice objects in the NCBI C++ Toolkit
The following topics are discussed in this section:

• Introduction
• C++ choice objects

Introduction
The datatool program processes the ASN.1 specification files (*.asn) in the src/objects/
directories to generate the associated C++ class definitions. The corresponding program

Page 56

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects

implemented in the C Toolkit, asntool, used the ASN.1 specifications to generate C enums,
structs, and functions. In contrast, datatool must generate C++ enums, classes and methods. In
addition, for each defined object type, datatool must also generate the associated type
information method or function.

There is a significant difference in how these two tools implement ASN.1 choice elements. As
an example, consider the following ASN.1 specification:

Object-id ::= CHOICE {
 id INTEGER,
 str VisibleString
}

The ASN.1 choice element specifies that the corresponding object may be any one of the listed
types. In this case, the possible types are an integer and a string. The approach used in asntool
was to implement all choice objects as ValNodes, which were in turn defined as:

typedef struct valnode {
 unsigned choice;
 DataVal data;
 struct valnode *next;
} ValNode;

The DataVal field is a union, which may directly store numerical values, or alternatively, hold
a void pointer to a character string or C struct. Thus, to process a choice element in the C
Toolkit, one could first retrieve the choice field to determine how the data should be interpreted,
and subsequently, retrieve the data via the DataVal field. In particular, no explicit
implementation of individual choice objects was used, and it was left to functions which
manipulate these elements to enforce logical consistency and error checking for legitimate
values. A C struct which included a choice element as one of its fields merely had to declare
that element as type ValNode. This design was further complicated by the use of a void pointer
to store non-primitive types such as structs or character strings.

In contrast, the C++ datatool implementation of choice elements defines a class with built-in,
automatic error checking for each choice object. The usage of CObject class hierarchy (and
the associated type information methods) solves many of the problems associated with working
with void pointers.

C++ choice objects
The classes generated by datatool for choice elements all have the following general structure:

class C[AsnChoiceName] : public CObject
{
public:
 ... // constructors and destructors
 DECLARE_INTERNAL_TYPE_INFO(); // declare GetTypeInfo() method
 enum E_Choice { // enumerate the class names
 e_not_set, // for the choice variants
 e_Xxx,
 ...
 };
 typedef CXxx TXxx; // typedef each variant class

Page 57

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

 ...
 virtual void Reset(void); // reset selection to none
 E_Choice Which(void) const; // return m_choice
 void Select(E_Choice index, // change the current selection
 EResetVariant reset);
 static string SelectionName(E_Choice index);
 bool IsXxx(void) const; // true if m_choice == eXxx
 CXxx& GetXxx(void);
 const CXxx& GetXxx(void) const;
 CXxx& SetXxx(void);
 void SetXxx(const CRef<CXxx>& ref);
 ...
private:
 E_Choice m_choice; // choice state
 union {
 TXxx m_Xxx;
 ...
 };
 CObject *m_object; // variant's data
 ...
};

For the above ASN.1 specification, datatool generates a class named CObject_id, which is
derived from CObject. For each choice variant in the specification, an enumerated value (in
E_Choice), and an internal typedef are defined, and a declaration in the union data member is
made. For this example then, we would have:

enum E_Choice {
 e_not_set,
 e_Id,
 e_Str
};
...
typedef int TId;
typedef string TStr;
...
union {
 TId m_Id;
 string *m_string;
};

In this case both of the choice variants are C++ built-in types. More generally however, the
choice variant types may refer to any type of object. For convenience, we refer to their C++
type names here as "CXxx",

Two private data members store information about the currently selected choice variant:
m_choice holds the enum value, and m_Xxx holds (or points to a CObject containing) the
variant's data. The choice object's member functions provide access to these two data members.
Which() returns the currently selected variant's E_Choice enum value. Each choice variant has
its own Get() and Set() methods. Each GetXxx() method throws an exception if the variant
type for that method does not correspond to the current selection type. Thus, it is not possible
to unknowingly retrieve the incorrect type of choice variant.

Page 58

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

Select(e_Xxx) uses a switch(e_Xxx) statement to initialize m_Xxx appropriately, sets
m_choice to e_Xxx, and returns. Two SetXxx() methods are defined, and both use this Select
() method. SetXxx() with no arguments calls Select(e_Xxx) and returns m_Xxx (as initialized
by Select()). SetXxx(TXxx& value) also calls Select(e_Xxx) but resets m_Xxx to value before
returning.

Some example choice objects in the C++ Toolkit are:
• CDate
• CInt_fuzz
• CObject_id
• CPerson_id
• CAnnotdesc
• CSeq_annot

Traversing a Data Structure
The following topics are discussed in this section:

• Locating the Class Definitions
• Accessing and Referencing Data Members
• Traversing a Biostruc
• Iterating Over Containers

Locating the Class Definitions
In general, traversing through a class object requires that you first become familiar with the
internal class structure and member access functions for that object. In this section we consider
how you can access this information in the source files, and apply it. The example provided
here involves a Biostruc type which is implemented by class CBiostruc, and its base (parent)
class, CBiostruc_Base.

The first question is: how do I locate the class definitions implementing the object to be
traversed? There are now two source browsers which you can use. To obtain a synopsis of the
class, you can search the index or the class hierarchy of the Doc++ browser and follow a link
to the class. For example, a synopsis of the CBiostruc class is readily available. From this page,
you can also access the relevant source files archived by theLXR browser, by following the
Locate CBiostruc link. Alternatively, you may want to access the LXR engine directly by using
the Identifier search tool.

Because we wish to determine which headers to include, the synopsis displayed by the Identifier
search tool is most useful. There we find a single header file, Biostruc.hpp, listed as defining
the class. Accordingly, this is the header file we must include. The CBiostruc class inherits
from the CBiostruc_Base class however, and we will need to consult that file as well to
understand the internal structure of the CBiostruc class. Following a link to the parent class
from the class hierarchy browser, we find the definition of the CBiostruc_Base class.

This is where we must look for the definitions and access functions we will be using. However,
it is the derived user class (CBiostruc) whose header should be included in your source files,
and which should be instantiated by your local program variable. For a more general discussion
of the relationship between the base parent objects and their derived user classes, see Working
with the serializable object classes.

Page 59

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCInt__fuzz.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCPerson__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCAnnotdesc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSeq__annot.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classes.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

Accessing and Referencing Data Members
Omitting some of the low-level details of the base class, we find the CBiostruc_Base class has
essentially the following structure:

class CBiostruc_Base : public CObject
{
public:
 // type definitions
 typedef list< CRef<CBiostruc_id> > TId;
 typedef list< CRef<CBiostruc_descr> > TDescr;
 typedef list< CRef<CBiostruc_feature_set> > TFeatures;
 typedef list< CRef<CBiostruc_model> > TModel;
 typedef CBiostruc_graph TChemical_graph;
 // Get() members
 const TId& GetId(void) const;
 const TDescr& GetDescr(void) const;
 const TChemical_graph& GetChemical_graph(void) const;
 const TFeatures& GetFeatures(void) const;
 const TModel& GetModel(void) const;
 // Set() members
 TId& SetId(void);
 TDescr& SetDescr(void);
 TChemical_graph& SetChemical_graph(void);
 TFeatures& SetFeatures(void);
 TModel& SetModel(void);
private:
 TId m_Id;
 TDescr m_Descr;
 TChemical_graph m_Chemical_graph;
 TFeatures m_Features;
 TModel m_Model;
};

With the exception of the structure's chemical graph, each of the class's private data members
is actually a list of references (pointers), as specified by the type definitions. For example, TId
is a list of CRef objects, where each CRef object points to a CBiostruc_id. The CRef class is
a type of smart pointer used to hold a pointer to a reference-counted object. The dereferencing
operator, when applied to a (dereferenced) iterator pointing to an element of CBiostruc::TId,
e.g. **CRef_i, will return a CBiostruc_id. Thus, the call to GetId() returns a list which must
then be iterated over and dereferenced to get the individual CBiostruc_id objects. In contrast,
the function GetChemicalGraph() returns the object directly, as it does not involve a list or a
CRef.

NOTE: It is strongly recommended that you use type names defined in the generated classes
(e.g. TId, TDescr) rather than generic container names (list< CRef<CBiostruc_id> > etc.). The
real container class may change occasionally and you will have to modify the code using
generic container types every time it happens. When iterating over a container it's
recommended to use ITERATE and NON_CONST_ITERATE macros.

The GetXxx() and SetXxx() member functions define the user interface to the class, providing
methods to access and modify ("mutate") private data. In addition, most classes, including

Page 60

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__id.html

CBiostruc, have IsSetXxx() and ResetXxx() methods to validate and clear the data members,
respectively.

Traversing a Biostruc
The program traverseBS.cpp (see Code Sample 4) demonstrates how one might load a serial
data file and iterate over the components of the resulting object. This example reads from a
text ASN.1 Biostruc file and stores the information into a CBiostruc object in memory. The
overloaded Visit() function is then used to recursively examine the object CBiostruc bs and its
components.

Visit(bs) simply calls Visit() on each of the CBiostruc data members, which are accessed using
bs.GetXxx(). The information needed to write each of these functions - the data member types
and member function signatures - is contained in the respective header files. For example,
looking at Biostruc_.hpp, we learn that the structure's descriptor list can be accessed using
GetDescr(), and that the type returned is a list of pointers to descriptors:

typedef list< CRef<CBiostruc_descr> > TDescr;
const TDescr& GetDescr(void) const;

Consulting the base class for CBiostruc_desc in turn, we learn that this class has a choice state
defining the type of value stored there as well as the method that should be used to access that
value. This leads to an implementation of Visit(CBiostruc::TDescr DescrList) that uses an
iterator over its list argument and a switch statement over the current descriptor's choice state.

Iterating Over Containers
Most of the Visit() functions implemented here rely on standard STL iterators to walk through
a list of objects. The general syntax for using an iterator is:

ContainerType ContainerName;
ITERATE(ContainerType, it, ContainerName) {
 ObjectType ObjectName = *it;
 // ...
}

Dereferencing the iterator is required, as the iterator behaves like a pointer that traverses
consecutive elements of the container. For example, to iterate over the list of descriptors in the
Biostruc, we use a container of type CBiostruc::TDescr, and the constant version of the
ITERATE macro to ensure that the data is not mutated in the body of the loop. Because the
descriptor list contains pointers (CRefs) to objects, we will actually need to dereference
twice to get to the objects themselves.

ITERATE(CBiostruc::TDescr, it, descList) {
 const CBiostruc_descr& thisDescr = **it;
 // ...
}

In traversing the descriptor list in this example, we handled each type of descriptor with an
explicit case statement. In fact, however, we really only visit those descriptors whose types
have string representations: TName, TPdb_comment, and TOther_comment. The other two
descriptor types, THistory and TAttribute, are objects that are "visited" recursively, but the
associated visit functions are not actually implemented (see Code Sample 5, traverseBS.hpp).

Page 61

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc_.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc_descr_Base
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

The NCBI C++ Toolkit provides a rich and powerful set of iterators for various application
needs. An alternative to using the above switch statement to visit elements of the descriptor
list would have been to use an NCBI CStdTypeIterator that only visits strings. For example,
we could implement the Visit function on a CBiostruc::TDescr as follows:

void Visit(const CBiostruc::TDescr& descList)
{
 ITERATE(CBiostruc::TDescr, it1, descList) {
 for (CStdTypeConstIterator<string> it2(ConstBegin(**it1)); it2; ++it2) {
 cout << *it2 << endl;
 }
 }
}

In this example, the iterator will skip over all but the string data members.

The CStdTypeIterator is one of several iterators which makes use of an object's type
information to implement the desired functionality. We began this section by positing that the
traversal of an object requires an a priori knowledge of that object's internal structure. This is
not strictly true however, if type information for the object is also available. An object's type
information specifies the class layout, inheritance relations, data member names, and various
other attributes such as size, which are independent of specific instances. All of the C++ type
iterators described in The NCBI C++ Toolkit Iterators section utilize type information, which
is the topic of a previous section: Runtime Object Type Information.

SOAP support
The NCBI C++ Toolkit SOAP server and client provide a limited level of support of SOAP
1.1 over HTTP, and use the document binding style with a literal schema definition. Document/
literal is the style that most Web services platforms were focusing on when this feature was
introduced. Parsing of WSDL (Web services description language) specification and automatic
C++ code generation are not supported. Still, since the WSDL message types section uses XML
schema, and since the application is capable of parsing Schema, the majority of the C++ code
generation can be done automatically.

SOAP message
The core section of the SOAP specification is the messaging framework. The client sends a
request and receives a response in the form of a SOAP message. A SOAP message is a one-
way transmission between SOAP nodes: from a SOAP sender to a SOAP receiver. The root
element of a SOAP message is the Envelope. The Envelope contains an optional Header
element followed by a mandatory Body element. The Body element represents the message
payload - it is a generic container that can contain any number of elements from any namespace.

In the Toolkit, the CSoapMessage class defines Header and Body containers. Serializable
objects (derived from the CSerialObject class) can be added into these containers using
AddObject() method. Such a message object can then be sent to a message receiver. The
response will also come in the form of an object derived from CSoapMessage. At this time, it
is possible to investigate its contents using GetContent() method; or ask directly for an object
of a specific type using the SOAP_GetKnownObject() template function.

Page 62

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSerialObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=SOAP_GetKnownObject

SOAP client (CSoapHttpClient)
The SOAP client is the initial SOAP sender - a node that originates a SOAP message. Knowing
the SOAP receiver's URL, it sends a SOAP request and receives a response using the Invoke
() method.

Internally, data objects in the Toolkit SOAP library are serialized and de-serialized using
serializable objects streams. Since each serial data object also provides access to its type
information, writing such objects is a straightforward operation. Reading the response is not
that transparent. Before actually parsing incoming data, the SOAP processor should decide
which object type information to use. Hence, a client application should tell the SOAP
processor what types of data objects it might encounter in the incoming data. If the processor
recognizes the object's type, it will parse the incoming data and store it as an instance of the
recognized type. Otherwise, the processor will parse the data into an instance of the
CAnyContentObject class.

So, a SOAP client must:
• Define the server's URL.
• Register the object types that might be present in the incoming data (using the

RegisterObjectType() method).
The CSoapHttpClient class also has methods for getting and setting the server URL and the
default namespace.

SOAP server (CSoapServerApplication)
The SOAP server receives SOAP mesages from a client and processes the contents of the SOAP
Body and SOAP Header.

The processing of incoming requests is done with the help of "message listeners" - the server
methods which analyze requests (in the form of objects derived from CSoapMessage) and
create responses. It is possible to have more than one listener for each message. When such a
listener returns TRUE, the SOAP server base class object passes the request to the next listener,
if it exists, and so on.

The server can return a WSDL specification if the specification file name is passed to the
server's constructor and the file is located with the server.

Sample SOAP server and client
The Toolkit contains a simple example of SOAP client and server in its src/sample/app/soap
folder.

The sample SOAP server supports the following operations:

GetDescription() - server receives an empty object of type Description, and it sends back a
single string;

GetVersion() - server receives a string, and it sends back two integer numbers and a string;

DoMath() - server receives a list of Operand objects (two integers and an enumerated value),
and it sends back a list of integers

The starting point is the WSDL specification - src\sample\app\soap\server
\soap_server_sample.wsdl

Page 63

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSoapHttpClient
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAnyContentObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSoapHttpClient
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSoapServerApplication
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage

Both client and server use data objects whose types are described in the message types section
of WSDL specification. So, we extract the XML schema part of the specification into a separate
file, and create a static library - soap_dataobj. All code in this library is generated automatically
by .

Sample server
Server is a CGI application. In its constructor we define the name of WSDL specification file
and the default namespace for the data objects. Since server's ability to return a WSDL
specification upon request from a client is optional, it is possible to give an empty file name
here. Once the name is not empty, the WSDL file should be deployed alongside the server.

During initialization server should register incoming object types and message listeners:

// Register incoming object types, so the SOAP message parser can

// recognize these objects in incoming data and parse them correctly.

RegisterObjectType(CVersion::GetTypeInfo);

RegisterObjectType(CMath::GetTypeInfo);

// Register SOAP message processors.

// It is possible to set more than one listeners for a particular message;

// such listeners will be called in the order of registration.

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::GetDescription),
"Description"); AddMessageListener((TWebMethod)
(&CSampleSoapServerApplication::GetDescription2), "Description");

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::GetVersion),
"Version");

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::DoMath),
"Math");

Note that while it is possible to register the Description type, it does not make much sense: the
object has no content, so there is no difference whether it will be parsed correctly or not.

Message listeners are user-defined functions that process incoming messages. They analyze
the content of SOAP message request and populate the response object.

Sample client
Unlike SOAP server, SOAP client object has nothing to do with CCgiApplication class. It is
"just" an object. As such, it can be created and destroyed when appropriate. Sample SOAP
client constructor defines the server URL and the default namespace for the data objects. Its
constructor is the proper place to register incoming object types:

// Register incoming object types, so the SOAP message parser can

// recognize these objects in incoming data and parse them correctly.

RegisterObjectType(CDescriptionText::GetTypeInfo);

Page 64

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CCgiApplication

RegisterObjectType(CVersionResponse::GetTypeInfo);

RegisterObjectType(CMathResponse::GetTypeInfo);

Other methods encapsulate operations supported by the SOAP server, which the client talks
to. Common schema is to create two SOAP message object - request and response, populate
request object, call Invoke() method of the base class, and extract the meaningful data from
the response.

Test Cases [src/serial/test]
Available Serializable Classes (as per NCBI ASN.1 Specifications) [Library xobjects:
include | src]

The ASN.1 data objects are automatically built from their corresponding specifications in the
NCBI ASN.1 data model, using DATATOOL to generate all of the required source code. This
set of serializable classes defines an interface to many important sequence and sequence-aware
objects that users may directly employ, or extend with their own code. An Object Manager
(see below) coordinates and simplifies the use of these ASN.1-derived objects.

Serializable Classes
• access [include | src]
• biblio [include | src]
• cdd [include | src]
• cn3d [include | src]
• docsum [include | src]
• entrez2 [include | src]
• featdef [include | src]
• general [include | src]
• id1 [include | src]
• medlars [include | src]
• medline [include | src]
• mim [include | src]
• mla [include | src]
• mmdb1 [include | src]
• mmdb2 [include | src]
• mmdb3 [include | src]
• ncbimime [include | src]
• objprt [include | src]
• proj [include | src]
• pub [include | src]
• pubmed [include | src]
• seq [include | src]
• seqalign [include | src]
• seqblock [include | src]

Page 65

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/biblio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/biblio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/entrez2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/entrez2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqblock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqblock

• seqcode [include | src]
• seqfeat [include | src]
• seqloc [include | src]
• seqres [include | src]
• seqset [include | src]
• submit [include | src]
• taxon1 [include | src]

A Test Application Using the Serializable ASN.1 Classes
• asn2asn [src]

Figure 1. Traversal path of the CTypeIterator

Page 66

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/taxon1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/taxon1
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/app/asn2asn

Table 1. Network Service Client Generation Parameters
Name Value

class (REQUIRED) C++ class name to use.

service Named service to connect to; if you do not define this, you will need to override x_Connect in the user class.

serialformat Serialization format: normally AsnBinary, but AsnText and Xml are also legal.

request (REQUIRED) ASN.1 type for requests; may include a module name, a field name (as with Entrez2), or both. Must be a CHOICE.

reply (REQUIRED) ASN.1 type for replies, as above.

reply.choice_name Reply choice appropriate for requests of type choice_name; defaults to choice_name as well, and determines the return
type of AskChoice_name. May be set to special to suppress automatic method generation and let the user class handle
the whole thing.

Page 67

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2. BEGIN_NAMED_* Macro names and their usage
Macro name Used for Arguments

BEGIN_NAMED_CLASS_INFO Non-abstract class object ClassAlias, ClassName

BEGIN_NAMED_ABSTRACT_CLASS_INFO Abstract class object ClassAlias, ClassName

BEGIN_NAMED_DERIVED_CLASS_INFO Derived subclass object ClassAlias, ClassName, BaseClassName

BEGIN_NAMED_CHOICE_INFO C++ class choice object ClassAlias, ClassName

BEGIN_NAMED_ENUM_INF Enum object EnumAlias, EnumName, IsInteger

BEGIN_NAMED_ENUM_IN_INFO internal Enum object EnumAlias, CppContext, EnumName, IsInteger

Page 68

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3. ADD_* Macros and their usage
Macro name Usage Arguments

ADD_NAMED_STD_MEMBER Add a standard data member
to a class

MemberAlias, MemberName

ADD_NAMED_CLASS_MEMBER Add an internal class
member to a class

MemberAlias, MemberName

ADD_NAMED_SUB_CLASS Add a derived subclass to a
class

SubClassAlias, SubClassName

ADD_NAMED_REF_MEMBER Add a CRef data member to
a class

MemberAlias, MemberName, RefClass

ADD_NAMED_ENUM_MEMBER Add an enumerated data
member to a class

MemberAlias, MemberName, EnumName

ADD_NAMED_ENUM_IN_MEMBER Add an externally defined
enumerated data member to
a class

MemberAlias, MemberName, CppContext, EnumName

ADD_NAMED_MEMBER Add a data member of the
type specified by
TypeMacro to a class

MemberAlias, MemberName, TypeMacro,
TypeMacroArgs

ADD_NAMED_STD_CHOICE_VARIANT Add a standard variant type
to a C++ choice object

VariantAlias, VariantName

ADD_NAMED_REF_CHOICE_VARIANT Add a CRef variant to a C+
+ choice object

VariantAlias, VariantName, RefClass

ADD_NAMED_ENUM_CHOICE_VARIANT Add an enumeration variant
to a C++ choice object

VariantAlias, VariantName, EnumName

ADD_NAMED_ENUM_IN_CHOICE_VARIANT Add an enumeration variant
to a C++ choice object

VariantAlias, VariantName, CppContext, EnumName

ADD_NAMED_CHOICE_VARIANT Add a variant of the type
specified by TypeMacro to a
C++ choice object

VariantAlias, VariantName, TypeMacro, TypeMacroArgs

ADD_ENUM_VALUE Add a named enumeration
value to an enum

EnumValName, Value

Page 69

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4. Type macros and their arguments
TypeMacro TypeMacroArgs

CLASS (ClassName)

STD (C++ type)

StringStore ()

null ()

ENUM (EnumType, EnumName)

POINTER (Type,Args)

STL_multiset (Type,Args)

STL_set (Type,Args)

STL_multimap (KeyType,KeyArgs,ValueType,ValueArgs)

STL_map (KeyType,KeyArgs,ValueType,ValueArgs)

STL_list (Type,Args)

STL_list_set (Type,Args)

STL_vector (Type,Args)

STL_CHAR_vector (C++ Char type)

STL_auto_ptr (Type,Args)

CHOICE (Type,Args)

Code Sample 1. xml2asn.cpp

// File name: xml2asn.cpp
// Description: Reads an XML Biostruc file into memory
// and saves it in ASN.1 text and binary formats.

#include <corelib/ncbistd.hpp>
#include <corelib/ncbiapp.hpp>
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <objects/mmdb1/Biostruc.hpp>

USING_NCBI_SCOPE;

class CTestAsn : public CNcbiApplication {
public:
 virtual int Run ();
};

using namespace objects;

int CTestAsn::Run() {
 auto_ptr<CObjectIStream>

Page 70

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
 auto_ptr<CObjectOStream>
 txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
 auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
 CBiostruc bs;
 *xml_in >> bs;
 *txt_out << bs;
 *bin_out << bs;
 return 0;
}

int main(int argc, const char* argv[])
{
 CNcbiOfstream diag("asntrans.log");
 SetDiagStream(&diag);
 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

Code Sample 2. ctypeiter.cpp

// File name: ctypeiter.cpp
// Description: Demonstrate using a CTypeIterator
// Notes: build with xncbi and xser libraries

#include "ctypeiter.hpp"
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/iterator.hpp>
#include <serial/serialimpl.hpp>

// type information for class CPerson
BEGIN_CLASS_INFO(CPerson){
 ADD_STD_MEMBER(m_Name);
 ADD_STD_MEMBER(m_Addr);
 ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)))->SetOptional();
}END_CLASS_INFO

// type information for class CDistrict
BEGIN_CLASS_INFO(CDistrict){
 ADD_STD_MEMBER(m_Number);
 ADD_MEMBER(m_Blocks, STL_list, (CLASS, (CPerson)));
}END_CLASS_INFO

// main and other functions
USING_NCBI_SCOPE;

static void FullerBrushMan (const CPerson& p) {
 cout << "knock-knock! is " << p.m_Name << " home?" << endl;

Page 71

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

}

int main(int argc, char** argv)
{
 // Instantiate a few CPerson objects
 CPerson neighborhood("Moe", "1 Main St",
 new CPerson("Larry", "2 Main St",
 new CPerson("Curly", "3 Main St", 0)));
 CPerson another("Harpo", "2 River Rd",
 new CPerson("Chico", "4 River Rd",
 new CPerson("Groucho", "6 River Rd", 0)));

 // Create a CDistrict and install some CPerson objects
 CDistrict district1(1);
 district1.AddBlock(neighborhood);
 district1.AddBlock(another);
 // Send the FullerBrushMan to all CPersons in district1
 for (CTypeConstIterator<CPerson> house = ConstBegin(district1);
 house; ++house) {
 FullerBrushMan(*house);
 }
 // Iterate over all strings for the CPersons in district1
 list<CPerson> blocks(district1.GetBlocks());
 ITERATE(list<CPerson>, b, blocks) {
 for (CStdTypeIterator<string> it(Begin(*b)); it; ++it) {
 cout << *it << ' ';
 }
 cout << endl;
 }
 return 0;
}

Code Sample 3. ctypeiter.hpp

// File name: ctypeiter.hpp

#ifndef CTYPEITER_HPP
#define CTYPEITER_HPP

#include <corelib/ncbistd.hpp>
#include <corelib/ncbiobj.hpp>
#include <serial/typeinfo.hpp>
#include <string>
#include <list>

USING_NCBI_SCOPE;

class CPerson
{
public:
 CPerson(void)

Page 72

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 : m_Name(0), m_Addr(0), m_NextDoor(0) {}
 CPerson(string n, string s, CPerson* p)
 : m_Name(n), m_Addr(s), m_NextDoor(p) {}
 virtual ~CPerson(void) {}
 static const CTypeInfo* GetTypeInfo(void);
private:
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};

class CDistrict
{
public:
 CDistrict(void)
 : m_Number(0) {}
 CDistrict(int n) : m_Number(n) {}
 virtual ~CDistrict(void) {}
 static const CTypeInfo* GetTypeInfo(void);
 int m_Number;
 void AddBlock (const CPerson& p) { m_Blocks.push_back(p); }
 list<CPerson>& GetBlocks() { return m_Blocks; }
private:
 list<CPerson> m_Blocks;
};
#endif /* CTYPEITER_HPP */

Code Sample 4. traverseBS.cpp

// File name: traverseBS.cpp
// Description: Reads an ASN.1 Biostruc text file into memory
// and visits its components

#include <serial/serial.hpp>
#include <serial/iterator.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>
#include <objects/general/Dbtag.hpp>
#include <objects/general/Object_id.hpp>
#include <objects/seq/Numbering.hpp>
#include <objects/seq/Pubdesc.hpp>
#include <objects/seq/Heterogen.hpp>
#include <objects/mmdb1/Biostruc.hpp>
#include <objects/mmdb1/Biostruc_id.hpp>
#include <objects/mmdb1/Biostruc_history.hpp>
#include <objects/mmdb1/Mmdb_id.hpp>
#include <objects/mmdb1/Biostruc_descr.hpp>
#include <objects/mmdb1/Biomol_descr.hpp>
#include <objects/mmdb1/Molecule_graph.hpp>
#include <objects/mmdb1/Inter_residue_bond.hpp>
#include <objects/mmdb1/Residue_graph.hpp>
#include <objects/mmdb3/Biostruc_feature_set.hpp>

Page 73

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#include <objects/mmdb2/Biostruc_model.hpp>
#include <objects/pub/Pub.hpp>
#include <corelib/ncbistre.hpp>

#include "traverseBS.hpp"

USING_NCBI_SCOPE;
using namespace objects;

int CTestAsn::Run()
{
 // initialize ASN input stream
 auto_ptr<CObjectIStream>
 inObject(CObjectIStream::Open("1001.val", eSerial_AsnBinary));
 // initialize, read into, and traverse CBiostruc object
 CBiostruc bs;
 *inObject >> bs;
 Visit (bs);
 return 0;
}

/***
*
* The overloaded free "visit" functions are used to explore the
* Biostruc and all its component members - most of which are also
* class objects. Each class has a public interface that provides
* access to its private data via "get" functions.
*
**/
void Visit (const CBiostruc& bs)
{
 cout << "Biostruc:\n" << endl;
 Visit (bs.GetId());
 Visit (bs.GetDescr());
 Visit (bs.GetChemical_graph());
 Visit (bs.GetFeatures());
 Visit (bs.GetModel());
}

/**
*
* TId is a type defined in the CBiostruc class as a list of CBiostruc_id,
* where each id has a choice state and a value. Depending on the choice
* state, a different get() function is used.
*
***/
void Visit (const CBiostruc::TId& idList)
{
 cout << "\n Visiting Ids of Biostruc:\n";

 for (CBiostruc::TId::const_iterator i = idList.begin();

Page 74

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 i != idList.end(); ++i) {

 // dereference the iterator to get to the id object
 const CBiostruc_id& thisId = **i;
 CBiostruc_id::E_Choice choice = thisId.Which();
 cout << "choice = " << choice;

 // select id's get member function depending on choice
 switch (choice) {
 case CBiostruc_id::e_Mmdb_id:
 cout << " mmdbId: " << thisId.GetMmdb_id().Get() << endl;
 break;
 case CBiostruc_id::e_Local_id:
 cout << " Local Id: " << thisId.GetLocal_id().GetId() << endl;
 break;
 case CBiostruc_id::e_Other_database:
 cout << " Other DB Id: "
 << thisId.GetOther_database().GetDb() << endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}

/***
*
* TDescr is also a type defined in the Biostruc class as a list of
* CBiostruc_descr, where each descriptor has a choice state and a value.
*
***/
void Visit (const CBiostruc::TDescr& descList)
{
 cout << "\n Visiting Descriptors of Biostruc:\n";

 for (CBiostruc::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 // dereference the iterator to get the descriptor
 const CBiostruc_descr& thisDescr = **i;
 CBiostruc_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiostruc_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiostruc_descr::e_Pdb_comment:
 cout << " Pdb comment: " << thisDescr.GetPdb_comment() << endl;
 break;

Page 75

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 case CBiostruc_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() << endl;
 break;
 case CBiostruc_descr::e_History:
 cout << " History: " << endl;
 Visit (thisDescr.GetHistory());
 break;
 case CBiostruc_descr::e_Attribution:
 cout << " Attribute: " << endl;
 Visit (thisDescr.GetAttribution());
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
 VisitWithIterator (descList);
}

/
**
**
*
* An alternate way to visit the descriptor nodes using a CStdTypeIterator
*
**
**/
void VisitWithIterator (const CBiostruc::TDescr& descList)
{
 cout << "\n Revisiting descriptor list with string iterator...:\n";

 for (CBiostruc::TDescr::const_iterator i1 = descList.begin();
 i1 != descList.end(); ++i1) {

 const CBiostruc_descr& thisDescr = **i1;

 for (CStdTypeConstIterator<NCBI_NS_STD::string>
 i = ConstBegin(thisDescr); i; ++i) {
 cout << "next descriptor" << *i << endl;
 }
 }
}

/
**
**
*
* Chemical graphs contain lists of descriptors, molecule_graphs, bonds,
and
* residue graphs. Here we just visit some of the descriptors.
*
**

Page 76

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

**/
void Visit (const CBiostruc::TChemical_graph& G)
{
 cout << "\n\n Visiting Chemical Graph of Biostruc\n";

 const CBiostruc_graph::TDescr& descList = G.GetDescr();
 for (CBiostruc_graph::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 // dereference the iterator to get the descriptor
 const CBiomol_descr& thisDescr = **i;
 CBiomol_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiomol_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiomol_descr::e_Pdb_class:
 cout << " Pdb class: " << thisDescr.GetPdb_class() << endl;
 break;
 case CBiomol_descr::e_Pdb_source:
 cout << " Pdb Source: " << thisDescr.GetPdb_source() << endl;
 break;
 case CBiomol_descr::e_Pdb_comment:
 cout << " Pdb comment: " << thisDescr.GetPdb_comment() << endl;
 break;
 case CBiomol_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() << endl;
 break;
 case CBiomol_descr::e_Organism: // skipped
 case CBiomol_descr::e_Attribution:
 break;
 case CBiomol_descr::e_Assembly_type:
 cout << " Assembly Type: " << thisDescr.GetAssembly_type() << endl;
 break;
 case CBiomol_descr::e_Molecule_type:
 cout << " Molecule Type: " << thisDescr.GetMolecule_type() << endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}

void Visit (const CBiostruc::TFeatures&)
{
 cout << "\n\n Visiting Features of Biostruc\n";
}

Page 77

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

void Visit (const CBiostruc::TModel&)
{
 cout << "\n\n Visiting Models of Biostruc\n";
}

int main(int argc, const char* argv[])
{
 // initialize diagnostic stream
 CNcbiOfstream diag("traverseBS.log");
 SetDiagStream(&diag);

 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

Code Sample 5. traverseBS.hpp

// File name traverseBS.hpp

#ifndef NCBI_TRAVERSEBS__HPP
#define NCBI_TRAVERSEBS__HPP

#include <corelib/ncbistd.hpp>
#include <corelib/ncbiapp.hpp>

USING_NCBI_SCOPE;
using namespace objects;

// class CTestAsn
class CTestAsn : public CNcbiApplication {
public:
 virtual int Run ();
};

void Visit(const CBiostruc&);
void Visit(const CBiostruc::TId&);
void Visit(const CBiostruc::TDescr&);
void Visit(const CBiostruc::TChemical_graph&);
void Visit(const CBiostruc::TFeatures&);
void Visit(const CBiostruc::TModel&);
void Visit(const CBiostruc_history&) {
 cout << "visiting history" << endl;
};

// Not implemented
void Visit(const CBiostruc_descr::TAttribution&) {};
void VisitWithIterator (const CBiostruc::TDescr& descList);

Page 78

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#endif /* NCBI_TRAVERSEBS__HPP */

Page 79

Data Serialization (ASN.1, XML)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

