300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

26: C Toolkit Resources for C++ Toolkit Users

Last Update: March 10, 2011.

Overview

For certain tasks in the C++ Toolkit environment, it is necessary to use, or at least refer to, material
from the NCBI C Toolkit. Here are some links relevant to the C Toolkit:

* C Toolkit Documentation
* C Toolkit Queryable Source Browser

Chapter Outline

The following is an outline of the topics presented in this chapter:
« Using NCBI C and C++ Toolkits together

— Overview

— Shared Sources
4 CONNECT Library
4 ASN.1 Specifications
— Run-Time Resources
4 LOG and CNcbiDiag
REG and CNcbiRegistry
MT LOCK and CRWLock
CONNECT Library in C++ Code
C Toolkit diagnostics redirection
4 CONNECT Library in C Code
* Access to the C Toolkit source tree using CVS
— CVS Source Code Retrieval for Public Read-only Access
— CVS Source Code Retrieval for In-House Users with Read-Write Access
4 Using CVS from Unix or Mac OS X
4 Using CVS from Windows

* & & o

Using NCBI C and C++ Toolkits together

Note: Due to security issues, not all links on this page are accessible by users outside NCBI.
+ Qverview
« Shared Sources
— CONNECT Library
— ASN.1 Specifications

« Run-Time Resources
— LOG and CNcbiDiag
— REG and CNcbiRegistry

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SB/hbr.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

— MT LOCK and CRWLock
— CONNECT Library in C++ Code
4 Setting LOG

4 Setting REG
4 Setting MT-Locking

4 Convenience call CONNECT Init()
— C Toolkit diagnostics redirection
— CONNECT Library in C Code

4 Convenience call CONNECT Init()

When using both C and C++ Toolkits together in a single application, it is very important to
understand that there are some resources shared between the two. This document describes
how to safely use both Toolkits together, and how to gain from their cooperation.

Shared Sources

To maintain a sort of uniformity and ease in source code maintenance, the CONNECT library
is the first library of both Toolkits kept the same at the source code level. To provide data
interoperability, ASN.1 specifications have to be identical in both Toolkits, too.

CONNECT Library

The CONNECT library is currently the only C code that is kept identical in both Toolkits. The
old API of the CONNECT library is still supported by means of a simple wrapper, which is
only in the C Toolkit. There are two scripts that perform synchronization between C++ Toolkit
and C Toolkit:

sync_c_to_cxx.pl — This script copies the latest changes made in the C Toolkit (which is kept
in the CVS repository) to the C++ Toolkit (kept in the Subversion repository). The following
files are presently copied: gicache.h and gicache.c. Both are copied from the distrib/network/
sybutils/ctlib CVS module to the trunk/c++/src/objtools/data_loaders/genbank/gicache
location in the Toolkit repository.

sync_cxx_to_c.pl — This script copies files in the opposite direction: from the C++ Toolkit to
the C Toolkit. Most of the files common to both Toolkits are synchronized by this script. Here’s
the list of C source directories (CVS modules) that are currently copied from Subversion:

- connect

- ctools

- algo/blast/core

- algo/blast/composition_adjustment

- util/tables

- util/creaders

ASN files in the following CVS modules are also synchronized with Subversion:

- network/medarch/client

- network/taxon1/common

- network/id1arch

- network/id2arch

- access

- asn

- biostruc

C Toolkit Resources for C++ Toolkit Users

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

- biostruc/cdd
- biostruc/cn3d
- tools

- api

- data

ASN.1 Specifications

Unlike the C source files in the CONNECT library, the ASN.1 data specifications are
maintained within C Toolkit source structure, and have to be copied over to C++ Toolkit tree
whenever they are changed.

However, the internal representations of ASN.1-based objects differ between the two Toolkits.
If you need to convert an object from one representation to the other, you can use the template
class CAsnConverter<>, defined in ctools/asn_converter.hpp.

Run-Time Resources

The CONNECT library was written for use "as is" in the C Toolkit, but it must also be in the
C++ Toolkit tree. Therefore, it cannot directly employ the utility objects offered by the C++
Toolkit such as message logging CNcbiDiag, registry CNcbiRegistry, and MT-locks
CRWLock. Instead, these objects were replaced with helper objects coded entirely in C (as
tables of function pointers and data).

On the other hand, throughout the code, the CONNECT library refers to predefined objects
g CORE Log (so called CORE C logger) g CORE Registry (CORE C registry), and

g CORE Lock (CORE C MT-lock), which actually are never initialized by the library, i.e.
they are empty objects, which do nothing. It is an application's resposibility to replace these
dummies with real working logger, registry, and MT-lock objects. There are two approaches,
one for C and another for C++.

C programs can call CORE_SetREG(), CORE SetLOG(), and CORE_SetLOCK() to set up
the registry, logger, and MT-lock (connect/ncbi_util.h must also be included). There are also
convenience routines for CORE logger, like CORE SetLOGFILE(),

CORE_SetLOGFILE NAME(), which facilitate redirecting logging messages to either a C
stream (FILE*) or a named file.

In a C++ program, it is necessary to convert native C++ objects into their C equivalents, so
that the C++ objects can be used where types LOG, REG or MT LOCK are expected. This is
done using calls declared in connect/ncbi_core_cxx.hpp, as described later in this section.

LOG and CNcbiDiag

The CONNECT library has its own logger, which has to be set by one of the routines declared
in connect/ncbi_util.h: CORE_SetLOG(), CORE_SetLOGFILE() etc. On the other hand, the
interface defined in connect/ncbi_core cxx.hpp provides the following C++ function to
convert a logging stream of the NCBI C++ Toolkit into a LOG object:

LOG LOG_cxx2c (void)
This function creates the LOG object on top of the corresponding C++ CNcbiDiag object, and
then both C and C++ objects can be manipulated interchangeably, causing exactly the same

effect on the underlying logger. Then, the returned C handle LOG can be subsequently used
as a CORE C logger by means of CORE_SetLOG(), as in the following nested calls:

C Toolkit Resources for C++ Toolkit Users

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAsnConverter&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/asn_converter.hpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE_NAME
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG_cxx2c

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

CORE_SetLOG (LOG cxx2c());

REG and CNcbiRegistry

connect/ncbi_core cxx.hpp declares the following C++ function to bind C REG object to
CNcbiRegistry used in C++ programs built with the use of the NCBI C++ Toolkit:

REG REG cxx2c (CNcbiRegistry* reg, bool pass ownership = false)

Similarly to CORE C logger setting, the returned handle can be used later with CORE_SetREG
() declared in connect/ncbi_util.h to set up the global registry object (CORE C registry).

MT_LOCK and CRWLock

There is a function
MT_ LOCK MT_LOCK cxx2c (CRWLock* lock, bool pass_ownership = false)

declared in connect/ncbi_core cxx.hpp, which converts an object of class CRWLock into a C
object MT _LOCK. The latter can be used as an argument to CORE_SetLOCK() for setting the
global CORE C MT-lock, used by a low level code, written in C. Note that passing 0 as the
lock pointer will effectively create a new internal CRWLock object, which will then be
converted into MT_LOCK and returned. This object gets automatically destroyed when the
corresponding MT LOCK is destroyed. If the pointer to CRWLock is passed a non NULL
value then the second argument can specify whether the resulting MT LOCK acquires the
ownership of the lock, thus is able to delete the lock when destructing itself.

CONNECT Library in C++ Code

Setting LOG

To set up the CORE C logger to use the same logging format of messages and destination as
used by CNcbiDiag, the following sequence of calls may be used:

CORE_SetLOG (LOG_cxx2c()) ;
SetDiagTrace (eDT_Enable);
SetDiagPostLevel (eDiag_Info);
SetDiagPostFlag (eDPF _All);

Setting REG

To set the CORE C registry be the same as C++ registry CNcbiRegistry, the following call is
necessary:

CORE_SetREG (REG_cxx2c (cxxreg, true));
Here cxxreg is a CNcbiRegistry registry object created and maintained by a C++ application.

Setting MT-Locking

To set up a CORE lock, which is used throughout the low level code, including places of calls
of non-reentrant library calls (if no reentrant counterparts were detected during configure
process), one can place the following statement close to the beginning of the program:

CORE_SetLOCK (MT_LOCK_cxx2c()) ;

C Toolkit Resources for C++ Toolkit Users

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5
Note that the use of this call is extremely important in a multi-threaded environment.

Convenience call CONNECT _Init()

Header file connect/ncbi_core cxx.hpp provides a convenience call, which sets all shared
CONNECT-related resources discussed above for an application written within the C++
Toolkit framework (or linked solely against the libraries contained in the Toolkit):

void CONNECT Init (CNcbiRegistry* reg = NULL);

The call takes only one argument, an optional pointer to a registry, which is used by the
application, and should also be considered by the CONNECT library. No registry will be used
if NULL gets passed. The ownership of the registry is passed along. This fact should be noted
by an application making extensive use of CONNECT in static classes, i.e. prior to or after
main(), because the registry can get deleted before the CONNECT library stops using it. The
call also ties CORE C logger to CNcbiDiag, and privately creates a CORE C MT-lock object
(on top of CRWLock) for internal synchronization inside the library.

An example of how to use this call can be found in the test program
test_ncbi_conn_stream.cpp. It shows how to properly setup CORE C logger, CORE C registry
and CORE C MT-lock so they will use the same data in the C and C++ parts of both the
CONNECT library and the application code.

Another good source of information is the set of working application examples in src/app/
id1_fetch. Note: In the examples, the convenience routine does not change logging levels or
disable/enable certain logging properties. If this is desired, the application still has to use
separate calls.

C Toolkit diagnostics redirection

In a C/C++ program linked against both NCBI C++ and NCBI C Toolkits the diagnostics
messages (if any) generated by either Toolkit are not necessarily directed through same route,
which may result in lost or garbled messages. To set the diagnostics destination be the same
as CNcbiDiag's one, and thus to guarantee that the messages from both Toolkits will be all
stored sequentially and in the order they were generated, there is a call

#include <ctools/ctools.h>

void SetupCToolkitErrPost (void);

which is put in a specially designated directory ctools providing back links to the C Toolkit
from the C++ Toolkit.

CONNECT Library in C Code

The CONNECT library in the C Toolkit has a header connect/ncbi_core_c.h, which serves
exactly the same purpose as connect/ncbi_core cxx.hpp, described previously. It defines an
API to convert native Toolkit objects, like logger, registry, and MT-lock into their abstract
equivalents, LOG, REG, and MT_LOCK, respectively, which are defined in connect/
ncbi_core.h, and subsequently can used by the CONNECT library as CORE C objects.

Briefly, the calls are:

+ LOGLOG c2c (void); Create a logger LOG with all messages sent to it rerouted via
the error logging facility used by the C Toolkit.

C Toolkit Resources for C++ Toolkit Users

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONNECT_Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiRegistry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiDiag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRWLock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_conn_stream.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/ctools.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetupCToolkitErrPost
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core_c.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG_c2c

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

« REGREG c2c(const char conf file); Build a registry object REG from a named file
conf file. Passing NULL as an argument causes the default Toolkit registry file to be
searched for and used.

« MT LOCKMT LOCK c2c(TNImRWlock lock, int/*bool*/ pass_ownership); Build
an MT_LOCK object on top of TNImRWIlock handle. Note that passing NULL
effectively creates an internal handle, which is used as an underlying object. Ownership
of the original handle can be passed to the resulting MT LOCK by setting the second
argument to a non-zero value. The internally created handle always has its ownership
passed along.

Exactly the same way as described in the previous section, all objects, resulting from the above
functions, can be used to set up CORE C logger, CORE C registry, and CORE MT-lock of the
CONNECT library using the API defined in connect/ncbi_util.h: CORE_SetLOG(),
CORE_SetREG(), and CORE_SetLOCK(), respectively.

Convenience call CONNECT_Init()

As an alternative to using per-object settings as shown in the previous paragraph, the following
"all-in-one" call is provided:

void CONNECT Init (const char* conf file);

This sets CORE C logger to go via Toolkit default logging facility, causes CORE C registry
to be loaded from the named file (or from the Toolkit's default file if conf file passed NULL),
and creates CORE C MT-lock on top of internally created TNImR Wlock handle, the ownership
of which is passed to the MT_LOCK.

Note: Again, properties of the logging facility are not affected by this call, i.e. the selection of
what gets logged, how, and where, should be controlled by using native C Toolkit's mechanisms
defined in ncbierr.h.

Access to the C Toolkit source tree Using CVS

For a detailed description of the CVS utility see the CVS online manual or run the commands
"man cvs" or "cvs --help" on your Unix workstation.

CVS Source Code Retrieval for Public Read-only Access

Public access to the public part of the C Toolkit is available via CVS client. To use it, follow
exactly the in-house Unix / Mac OS X instructions with two exceptions:

« The CVSROQOT env. variable should be set to:
:pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault

» Use empty password to login:
> cvs login
Logging in to :pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault
CVS password: <just press ENTER here>

Public web access is also available via ViewVC.

CVS Source Code Retrieval for In-House Users with Read-Write Access

You must have a CV'S account set up prior to using CVS - email svn-admin@ncbi.nlm.nih.gov
to get set up.

The C Toolkit CVS repository is available online and may be searched using LXR.

C Toolkit Resources for C++ Toolkit Users

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=TNlmRWlock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CONNECT_Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/corelib/ncbierr.h
http://www.cs.utah.edu/csinfo/texinfo/cvs/cvs_toc.html
http://www.ncbi.nlm.nih.gov/viewvc/cvs/ncbi/
http://intranet/cvsutils/index.cgi/distrib
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/C_DOC/lxr/source

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

Using CVS from Unix or Mac OS X
Using CVS from Windows

Using CVS from Unix or Mac OS X
To set up a CVS client on Unix or Mac OS X:

Set the CVSROOT environment variable to: :pserver:$ {LOGNAME} @cvsvault:/src/
NCBI/vault.ncbi. Note that for NCBI Unix users, this may already be set if you
specified developer for the facilities option in the .ncbi_hints file in your home
directory.

Run the command: cvs login You will be asked for a password (email svn-
admin@ncbi.nlm.nih.gov if you need the password). This command will record your
login info into ~/.cvspass file so you won't have to login into CVS in the future.
Note: You may need to create an empty ~/.cvspass file before logging in as some CVS
clients apparently just cannot create it for you. If you get an authorization error, then
send e-mail with the errors to cpp-core@ncbi.nlm.nih.gov.

If you have some other CVS snapshot which was checked out with an old value of
CVSROOT, you should commit all your changes first, then delete completely the old
snapshot dir and run: cvs checkout to get it with new CVSROOT value.

Now you are all set and can use all the usual CVS commands.

Note: When you are in a directory that was created with cvs checkout by another person, a
local ./CVS/ subdirectory is also created in that directory. In this case, the cvs command ignores
the current value of the CVSROOT environment variable and picks up a value from ./CVS/
Root file. Here is an example of what this Root file looks like:

:pserver:username@cvsvault:/src/NCBI/vault.ncbi

Here the username is the user name of the person who did the initial CVS checkout in that
directory. So CVS picks up the credentials of the user who did the initial check-in and ignores
the setting of the CVSROOT environment variable, and therefore the CVS commands that
require authorization will fail. There are two possible solutions to this problem:

Create your own snapshot of this area using the cvs get command.

Impersonate the user who created the CVS directory by creating in the ~/.cvspass file
another string which is a duplicate of the existing one, and in this new string change

the username to that of the user who created the directory. This hack will allow you to
work with the CVS snapshot of the user who created the directory. However, this type
of hack is not recommended for any long term use as you are impersonating another
user.

Using CVS from Windows

The preferred CVS client is TortoiseCVS. If this is not installed on your PC, ask PC
Systems to have it installed. Your TortoiseCVS installation should include both a CVS
command-line client and integration into Windows Explorer.

To use TortoiseCVS as integrated into Windows Explorer:

Navigate to the directory where you want the source code to be put.
Right-click and select "CVS Checkout".

Set the CVSROOT text field to :pserver:%USERNAME%@cvsvault:/src/NCBI/
vault.ncbi (where %USERNAME% is replaced with your Windows user name).

C Toolkit Resources for C++ Toolkit Users

http://www.tortoisecvs.org/
http://jira.be-md.ncbi.nlm.nih.gov/secure/CreateIssue!default.jspa?pid=10371
http://jira.be-md.ncbi.nlm.nih.gov/secure/CreateIssue!default.jspa?pid=10371

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

Set the module text field to the portion of the C Toolkit you want to retrieve. If you
want the whole Toolkit, use distrib. If you want just one library, for example the
CONNECT library, use distrib/connect. There are also non C Toolkit modules (you
can see them here). You can work with those as well by using their names instead of
distrib (e.g. internal).

Click OK. If you are asked for a password and don't know what to use, email svn-
admin@ncbi.nlm.nih.gov.

From the context menu (right-click) you can now perform CVS functions, such as
updating, committing, tagging, diffing, etc.

You may also change global preferences (such as external tools) using the Preferences
application available from the Start menu.

For command-line use, follow the in-house Unix / Mac OS X instructions with these
exceptions:

Make sure you have your "home" directory set up -- i.e. the environment variables

HOMEDRIVE and HOMEPATH should be set. In NCBI, HOMEDRIVE usually set
to C:, and HOMEPATH is usually set to something like \Documents and Settings\%
USERNAMEY% (where %USERNAME% is replaced with your Windows user name).

Create an empty file named .cvspass in your "home" directory.
The CVS root needs to be specified.

— Either set an environment variable:
%CVSROOT%=:pserver:%USERNAME%@cvsvault:/src/NCBI/vault.ncbi

— or use a command-line argument for each CVS command:
-d :pserver:%USERNAME%@cvsvault:/src/NCBI/vault.ncbi

Open a command shell, verify the above environment variables are set properly, and
execute the command "cvs login". You will be asked for a password (email svn-
admin@ncbi.nlm.nih.gov if you need the password). This command will record your
login info in the .cvspass file so you won't have to log into CVS in the future. If you
get an authorization error, send e-mail with the errors to cpp-core@ncbi.nlm.nih.gov.

C Toolkit Resources for C++ Toolkit Users

http://intranet/cvsutils/index.cgi/distrib

