Lecture 11 Phylogenetic trees

Principles of Computational Biology Teresa Przytycka, PhD

Phylogenetic (evolutionary) Tree

- showing the evolutionary relationships among various biological species or other entities that are believed to have a common ancestor.
- Each node is called a taxonomic unit.
- Internal nodes are generally called hypothetical taxonomic units
- In a phylogenetic tree, each node with descendants represents the most recent common ancestor of the descendants, and the
- edge lengths (if present) correspond to time estimates.

Methods to construct phylogentic trees

- Parsimony
- Distance matrix based
- Maximum likelihood

Parsimony methods

The preferred evolutionary tree is
the one that requires
"the minimum net amount of evolution"
[Edwards and Cavalli-Sforza, 1963]

Assumption of character based parsimony

- Each taxa is described by a set of characters
- Each character can be in one of finite number of states
- In one step certain changes are allowed in character states
- Goal: find evolutionary tree that explains the states of the taxa with minimal number of changes

Example

		\triangle	\bigcirc
Taxon1	Yes	Yes	No
Taxon 2	YES	Yes	Yes
Taxon 3	Yes	No	No
Taxon 4	Yes	No	No
Taxon 5	Yes	No	Yes
Taxon 6	No	No	Yes

4 Changes

Version parsimony models:

- Character states
- Binary: states are 0 and 1 usually interpreted as presence or absence of an attribute (eg. character is a gene and can be present or absent in a genome)
- Multistate: Any number of states (Eg. Characters are position in a multiple sequence alignment and states are A,C,T,G.
- Type of changes:
- Characters are ordered (the changes have to happen in particular order or not.
- The changes are reversible or not.

Variants of parsimony

- Fitch Parsimony unordered, multistate characters with reversibility
- Wagner Parsimony ordered, multistate characters with reversibility
- Dollo Parsimony ordered, binary characters with reversibility but only one insertion allowed per character characters that are relatively chard to gain but easy to lose (like introns)
- Camin-Sokal Parsimony- no reversals, derived states arise once only
- (binary) prefect phylogeny - binary and nonreversible; each character changes at most once.

Prefect - No
 (triangle gained and the lost)

Dollo - Yes

Camin-Sokal -
No (for the same reason as perfect)

Camin-Sokal Parsimony

3 Changes

Homoplasy

Having some states arise more than once is called homoplasy.

Example - triangle in the tree on the previous slide

Finding most parsimonious tree

- There are exponentially many trees with n nodes
- Finding most parsimonious tree is NPcomplete (for most variants of parsimony models)
- Exception: Perfect phylogeny if exists can be found quickly. Problem - perfect phylogeny is to restrictive in practice.

Perfect phylogeny

- Each change can happen only once and is not reversible.
- Can be directed or not

Example: Consider binary characters. Each character corresponds to a gene.
0 -gene absent
1 -gene present
It make sense to assume directed changes only form 0 to 1 . The root has to be all zeros

Perfect phylogeny

Example: characters $=$ genes; $0=$ absent ; $1=$ present Taxa: genomes (A,B,C,D,E)
genes
A 000110
B 110000
C 000111
D 101000
E 000100

Perfect phylogeny tree
Goal: For a given character state matrix construct a tree topology that provides perfect phylogeny.

Does there exist prefect parsimony tree for our example with geometrical shapes?

There is a simple test

Character Compatibility

- Two characters A, B are compatible if there do not exits four taxa containing all four combinations as in the table
- Fact: there exits perfect phylogeny if and only if and only if all pairs of characters are compatible

T1	1	1
T2	1	0
T3	0	1
T4	0	0

Are not compatible

		\triangle	\bigcirc
Taxon1	Yes	Yes	No
Taxon 2	YES	Yes	Yes
Taxon 3	Yes	No	No
Taxon 4	Yes	No	No
Taxon 5	Yes	No	Yes
Taxon 6	No	No	Yes

One cannot add triangle to the tree so that no character changes it state twice:
If we add it to on of the left branches it will be inserted twice if to the right most - circle would have to be deleted (insertion and the deletion of the circle)

Ordered characters and perfect phylogeny

- Assume that we in the last common ancestor all characters had state 0 .
- This assumption makes sense for many characters, for example genes.
- Then compatibility criterion is even simpler: characters are compatible if and only if there do not exist three taxa containing combinations (1,0),(0,1),(1,1)

Example

A 000110
 B110000
 C000111
 D 101000
 E 000100

Under assumption that states are directed form 0 to 1 : if i and j are two different genes then the set of species containing i is either disjoint with set if species containing j or one of this sets contains the other.

- The above property is necessary and sufficient for prefect phylogeny under 0 to 1 ordering
- Why works: associated with each character is a subtree.

These subtrees have to be nested.

Simple test for prefect phylogeny

- Fact: there exits perfect phylogeny if and only if and only if all pairs of characters are compatible
- Special case: if we assume directed parsimony $(0 \rightarrow 1$ only) then characters are compatible if and only if there do not exist tree taxa containing combinations $(1,0),(0,1),(1,1)$
- Observe the last one is equivalent to non-overlapping criterion
- Optimal algorithm: Gusfield $\mathrm{O}(\mathrm{nm})$:

> n = \# taxa; m= \#characters

Two version optimization problem:

Small parsimony: Tree is given and we want to find the labeling that minimizes \#changes - there are good algorithms to do it.
Large parsimony: Find the tree that minimize number of evolutionary changes. For most models NP complete
One approach to large parsimony requires:

- generating all possible trees
- finding optimal labeling of internal nodes for each tree.

Fact 1: \#tree topologies grows exponentially with \#nodes
Fact 2: There may be many possible labels leading to the same score.

Clique method for large parsimony

characters

- Consider the following graph:
- nodes - characters;
- edge if two characters are compatible

∇

	1	2	3	4	5	6
α	1	0	0	1	1	0
β	0	0	1	0	0	0
γ	1	1	0	0	0	0
δ	1	1	0	1	1	1
ε	0	0	1	1	1	0
ω	0	0	0	0	0	0

Clique method (Meacham 1981) -

- Find maximal compatible clique (NPcomplete problem)
- Each characters defines a partition of the set into two subsets

Small parsimony

- Assumptions: the tree is known
- Goal: find the optimal labeling of the tree (optimal = minimizing cost under given parsimony assumption)

"Small" parsimony

Application of small parsimony problem

- errors in data
- loss of function
- convergent evolution (a trait developed independently by two evolutionary pathways e.g. wings in birds an bats)
- lateral gene transfer (transferring genes across species not by inheritance)

Red - gene encoding
N -acetylneuraminate lyase

From paper: Are There Bugs in Our Genome:
Anderson, Doolittle, Nesbo, Science 292 (2001) 1848-51

Dynamic programming algorithm for small parsimony problem

- Sankoff (1975) comes with the DP approach (Fitch provided an earlier non DP algorithm)
- Assumptions
- one character with multiple states
- The cost of change from state v to w is $\delta(\mathrm{v}, \mathrm{w})$ (note that it is a generalization, so far we talk about cost of any change equal to 1)

DP algorithm continued

$\mathrm{s}_{\mathrm{t}}(\mathrm{v})=$ minimum parsimony cost for node v under assumption that the character state is t.
$s_{t}(v)=0$ if v is a leaf. Otherwise let u, w be children of u

$\mathrm{O}(\mathrm{nk})$ cost where $\mathrm{n}=$ number of nodes $k=$ number of sates

Exercise

Left and right characters are independent, We will compute the left.

Branch lengths

- Numbers that indicate the number of changes in each branch
- Problem - there may by many most parsimonious trees
- Method 1: Average over all most parsimonious trees.
- Still a problem - the branch lengths are frequently underestimated

Character patterns and parsimony

- Assume 2 state characters (0/1) and four taxa A, B, C, D
- The possible topologies are:

ABC D
0000
0001
0010
0011
0, 0,0
$1,1,1$
1, 1, 1
$1,2,2$
Informative character
(helps to decide the tree topology)
Informative characters: xxyy, xyxy,xyyx

Inconsistency

- Let p, q character change probability
- Consider the three informative patters xxyy, xyxy, xyyx
- The tree selected by the parsimony depends which pattern has the highest fraction;
- If $\mathrm{q}(1-\mathrm{q})<\mathrm{p}^{2}$ then the most frequent pattern is xyxy leading to incorrect tree.

Distance based methods

- When two sequences are similar they are likely to originate from the same ancestor
- Sequence similarity can approximate evolutionary distances

Distance Method

- Assume that for any pair of species we have an estimation of evolutionary distance between them
- eg. alignment score
- Goal: construct a tree which best approximates these distance

Tree from distance matrix

	A	B	C	D	E
A	0	2	7	7	12
B	2	0	7	7	12
C	7	7	0	4	11
D	7	7	4	0	11
E	12	12	11	11	0

length of the path from A to $D=1+3+1+2=7$
Consider weighted trees: $\mathrm{w}(\mathrm{e})=$ weight of edge e
Recall: In a tree there is a unique path between any two nodes.
Let $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \mathrm{e}_{\mathrm{k}}$ be the edges of the path connecting u and v then the distance between u and v in the tree is:

$$
\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{w}\left(\mathrm{e}_{1}\right)+\mathrm{w}\left(\mathrm{e}_{2}\right)+\ldots+\mathrm{w}\left(\mathrm{e}_{\mathrm{k}}\right)
$$

Can one always represent a distance matrix as a weighted
 tree?

There is no way to add d to the tree and preserve the distances

Quadrangle inequality

C

$$
\mathrm{d}(\mathrm{a}, \mathrm{c})+\mathrm{d}(\mathrm{~b}, \mathrm{~d})=\mathrm{d}(\mathrm{a}, \mathrm{~d})+\mathrm{d}(\mathrm{~b}, \mathrm{c})>=\mathrm{d}(\mathrm{a}, \mathrm{~b})+\mathrm{d}(\mathrm{~d}, \mathrm{c})
$$

- Matrix that satisfies quadrangle inequality (called also the four point condition) for every four taxa is called additive.
- Theorem: Distance matrix can be represented precisely as a weighted tree if and only if it is additive.

Constructing the tree representing an additive matrix (one of several methods)

1. Start form 2-leaf tree a, b where a, b are any two elements
2. For $\mathrm{i}=3$ to n (iteratively add vertices) 1. Take any vertex z not yet in the tree and consider 2 vertices x, y that are in the tree and compute

$$
\begin{aligned}
& \mathrm{d}(\mathrm{z}, \mathrm{c})=(\mathrm{d}(\mathrm{z}, \mathrm{x})+\mathrm{d}(\mathrm{z}, \mathrm{y})-\mathrm{d}(\mathrm{x}, \mathrm{y})) / 2 \\
& \mathrm{~d}(\mathrm{x}, \mathrm{c})=(\mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}(\mathrm{y}, \mathrm{z})) / 2
\end{aligned}
$$

2. From step 1 we know position of c and the length of brunch (c, z).
If c did not hit exactly a brunching point add c and z
else take as y any node from sub-tree that brunches at c and repeat steps 1,2.

Example

Adding x :
$\mathrm{d}(\mathrm{x}, \mathrm{c})=(\mathrm{d}(\mathrm{u}, \mathrm{x})+\mathrm{d}(\mathrm{v}, \mathrm{x})-\mathrm{d}(\mathrm{u}, \mathrm{v})) / 2=(5+9-10) / 2=2$
$\mathrm{d}(\mathrm{u}, \mathrm{c})=(\mathrm{d}(\mathrm{u}, \mathrm{x})+\mathrm{d}(\mathrm{u}, \mathrm{v})-\mathrm{d}(\mathrm{x}, \mathrm{v})) / 2=(5+10-9) / 2=3$

Adding y:

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{y}, \mathrm{c}^{\prime}\right)=(\mathrm{d}(\mathrm{u}, \mathrm{y})+\mathrm{d}(\mathrm{v}, \mathrm{y})-\mathrm{d}(\mathrm{u}, \mathrm{w})) / 2=(5+9-10) / 2=2 \\
& \mathrm{~d}\left(\mathrm{u}, \mathrm{c}^{\prime}\right)=(\mathrm{d}(\mathrm{u}, \mathrm{y})+\mathrm{d}(\mathrm{u}, \mathrm{v})-\mathrm{d}(\mathrm{y}, \mathrm{v})) / 2=(10+9-5) / 2=7
\end{aligned}
$$

Real matrices are almost never additive

- Finding a tree that minimizes the error Optimizing the error is hard
- Heuristics:
- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- Neighborhood Joining (NJ)

Hierarchical Clustering

- Clustering problem: Group items (e.g. genes) with similar properties (e.g. expression pattern, sequence similarity) so that
- The clusters are homogenous (the items in each cluster are highly similar, as measured by the given property sequence similarity, expression pattern)
- The clusters are well separated (the items in different clusters are different)
- Hierarchical clustering Many clusters have natural sub-clusters which are often easier to identify e.g. cuts are sub-cluster of carnivore sub-cluster of mammals Organize the elements into a tree rather than forming explicit portioning

The basic algorithm

Input: distance array d; cluster to cluster distance function
Initialize:

1. Put every element in one-element cluster
2. Initialize a forest \mathbf{T} of one-node trees (each tree corresponds to one cluster)
while there is more than on cluster
3. Find two closest clusters C_{1} and C_{2} and merge them into C
4. Compute distance from \mathbf{C} to all other clusters
5. Add new vertex corresponding to C to the forest T and make nodes corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}$ children of this node.
6. Remove from d columns corresponding to C_{1}, C_{2}
7. Add to d column corresponding to \mathbf{C}

A distance function

- $\mathrm{d}_{\text {ave }}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=1 /\left(\left|\mathrm{C}_{1}\right|\left|\mathrm{C}_{2}\right|\right) \sum \mathrm{d}(\mathrm{x}, \mathrm{y})$ x in $C_{1} y$ in C_{2}

Example (on blackboard)

	A	B	C	D	E
A	0	2	7	7	12
B	2	0	7	7	12
C	7	7	0	4	11
D	7	7	4	0	11
E	12	12	11	11	0

Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

- Idea:
- Combine hierarchical clustering with a method to put weights on the edges
- Distance function used:

$$
\mathrm{d}_{\mathrm{ave}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)=1 /\left(\left|\mathrm{C}_{1}\right|\left|\mathrm{C}_{2}\right|\right) \sum_{\substack{x \text { in } \mathrm{C}_{1} \\ y \text { in } \mathrm{C}_{2}}} \mathrm{~d}(\mathrm{x}, \mathrm{y})
$$

- We need to come up with a method of computing brunch lengths

Ultrametric trees

- The distance from any internal node C to any of its leaves is constant and equal to $h(C)$
- For each node (v) we keep variable h height of the node in the tree. $h(v)=0$ for all leaves.

UPGMA algorithm

Initialization (as in hierarchical clustering); $h(v)=0$ while there is more than on cluster

1. Find two closest clusters C_{1} and C_{2} and merge them into C
2. Compute $\mathrm{d}_{\mathrm{ave}}$ from C to all other clusters
3. Add new vertex corresponding to C to the forest T and make nodes corresponding to C_{1}, C_{2} children of this node.
4. Remove from d columns corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}$
5. Add to d column corresponding to \mathbf{C}
6. $\mathbf{h}(\mathrm{C})=\mathrm{d}\left(\mathrm{c}_{1}, \mathrm{C}_{2}\right) / 2$
7. Assign length $h(C)-h\left(C_{1}\right)$ to edge $\left(C_{1}, C\right)$
8. Assign length $h(C)-h\left(C_{2}\right)$ to edge $\left(\mathrm{C}_{2}, \mathrm{C}\right)$

Neighbor Joining

- Idea:

A	0	5	7	10
B	5	0	4	7
C	7	4	0	5
D	10	7	5	0

- Construct tree by iteratively combing first nodes that are neighbors in the tree
- Trick: Figuring out a pair of neighboring vertices takes a trick - the closest pair want always do:
- B and C are the closest but are NOT neighbors.

Finding Neighbors

- Let $u(C)=1 /(\# c l u s t e r s-2) \Sigma d\left(C, C^{\prime}\right)$

all clusters C'

- Find a pair $\mathrm{C}_{1} \mathrm{C}_{2}$ that minimizes

$$
f\left(C_{1}, C_{2}\right)=d\left(C_{1}, C_{2}\right)-\left(u\left(C_{1}\right)+u\left(C_{2}\right)\right)
$$

- Motivation: keep d($\left.\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ small while (u($\left.\left.\mathrm{C}_{1}\right)+\mathrm{u}\left(\mathrm{C}_{2}\right)\right)$ large

Finding Neighbors

- Let $u(C)=1 /(\# c l u s t e r s-2) \sum_{\text {all clusters } C^{\prime}}^{d\left(C, C^{\prime}\right)}$
- Find a pair $\mathrm{C}_{1} \mathrm{C}_{2}$ that minimizes

$$
f\left(C_{1}, C_{2}\right)=d\left(C_{1}, C_{2}\right)-\left(u\left(C_{1}\right)+u\left(C_{2}\right)\right)
$$

- For the data from example:

$$
\begin{aligned}
& u\left(C_{A}\right)=u\left(C_{D}\right)=1 / 2(5+7+10)=11 \\
& u\left(C_{B}\right)=u\left(C_{C}\right)=1 / 2(5+4+7)=8 \\
& f\left(C_{A}, C_{B}\right)=5-11-8=-14 \\
& f\left(C_{B}, C_{C}\right)=4-8-8=-12
\end{aligned}
$$

NJ algorithm

Initialization (as in hierarchical clustering); $h(v)=0$ while there is more than on cluster

1. Find clusters C_{1} and C_{2} minimizing $f\left(C_{1} C_{2}\right)$ and merge then into C
2. Compute for all $\mathrm{C}^{*}: \mathrm{d}\left(\mathrm{C}, \mathrm{C}^{*}\right)=\left(\mathrm{d}\left(\mathrm{C}_{1} \mathrm{C}\right)+\mathrm{d}\left(\mathrm{C}_{2} \mathrm{C}\right)\right) / 2$
3. Add new vertex corresponding to C to the forest T and connect it to $\mathrm{C}_{1}, \mathrm{C}_{2}$
4. Remove from d columns corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}$
5. Add to d column corresponding to C
6. Assign length $1 / 2\left(d\left(C_{1} C_{2}\right)+u\left(C_{1}\right)-u\left(C_{2}\right)\right.$ to edge $C_{1} C$
7. Assign length $1 / 2\left(d\left(C_{1} C_{2}\right)+u\left(C_{2}\right)-u\left(C_{1}\right)\right.$ to edge $C_{2} C$

NJ tree is not rooted

The order of construction of internal nodes of NJ does not suggest an ancestral relation:

Rooting a tree

- Choose one distant organism as an outgroup

Bootstraping

- Estimating confidence in the tree topology
- Are we sure if this is correct?
-Is there enough evidence that A is a successor of B not the other way around?

Bootstrapping, continued

- Assume that the tree is build form multiple sequence alignment

Summary

- Assume you have multiple alignment of length N . Let T be the NJ tree build from this alignment
- Repeat, say 1000 times the following process:
- Select randomly with replacement N columns of the alignment to produce a randomized alignment
- Build the tree for this randomized alignment
- For each edge of T report \% time it was present in a tree build form randomized alignment. This is called the bootstrap value.
- Trusted edges: 80% or better bootstrap.

Maximum Likelihood Method

- Given is a multiple sequence alignment and probabilistic model of for substitutions (like PAM model) find the tree which has the highest probability of generating the data.
- Simplifying assumptions:
- Positions involved independently
- After species diverged they evolve independently.

Formally:

- Find the tree T such that assuming evolution model M
$\operatorname{Pr}[$ Data $\mid \mathrm{T}, \mathrm{M}]$ is maximized
- From the independence of symbols:
$\operatorname{Pr}[$ Data $\mid \mathrm{T}, \mathrm{M}]=\mathrm{P}_{\mathrm{i}} \operatorname{Pr}\left[\mathrm{D}_{\mathrm{i}} \mid \mathrm{T}, \mathrm{M}\right]$
Where the product is taken over all characters i and D_{i} value of the character i is over all taxa

Computing $\operatorname{Pr}\left[\mathrm{D}_{\mathrm{i}} \mid \mathrm{T}, \mathrm{M}\right]$


```
\(\operatorname{Pr}\left[\mathrm{D}_{\mathrm{i}} \mid \mathrm{T}, \mathrm{M}\right]\)
    \(=\sum \mathrm{x} \sum \mathrm{y} \sum \mathrm{z}\)
    \(p(x) p\left(x, y, t_{1}\right) p\left(y, A, t_{2}\right) p\left(y, B, t_{6}\right) p\left(x, z, t_{3}\right) p\left(z, C, t_{4}\right) p\left(z, D, t_{5}\right)\)
```


Discovering the tree of life

- "Tree of life" - evolutionary tree of all organisms
- Construction: choose a gene universally present in all organisms; good examples: small rRNA subunit, mitochondrial sequences.
- Things to keep in mind while constructing tree of life from sequence distances:
- Lateral (or horizontal) gene transfer
- Gene duplication: genome may contain similar genes that may evolve using different pathways. Phylogeny tree need to be derived based on orthologous genes.

Where we go with it...

- We now how to compute for given column and given tree $\operatorname{Pr}\left[\mathrm{D}_{\mathrm{i}} \mid \mathrm{T}, \mathrm{M}\right]$
- Sum up over all columns to get

$$
\operatorname{Pr}[\text { Data } \mid \mathrm{T}, \mathrm{M}]
$$

Now, explore the space of possible trees

Problem:

- Bad news: the space of all possible trees is HUGE

Various heuristic approaches are used.

Metropolis algorithm:Random Walk

 in Energy Space

Goal design transition probabilities so that the probability of arriving at state j is

_ temperature

$P(j)=q(j) / Z$
(typically, $\mathrm{q}(\mathrm{S})=\mathrm{e}^{-\mathrm{E}(\mathrm{S}) \mathrm{kT}}$, where $\mathrm{E}-$ energy)
Z - partition function $=$ sum over all states S of
terms $q(s)$. Z cannot be computed analytically since the space is to large

Monte Carlo, Metropolis Algorithm

- At each state i choose uniformly at random one of neighboring conformations j .
- Compute $p\left(\mathrm{i}_{\mathrm{j}}\right)=\min (1, q(\mathrm{i}) / q(\mathrm{j}))$
- With probability $p(\mathrm{i}, \mathrm{j})$ move to state j .
- Iterate

MrBayes

- Program developed by J.Huelsenbeck \& F.Ronquist.
- Assumption:
- $q(i)=\operatorname{Pr}\left[D \mid T_{i}, M\right]$ Prior probabilities: All trees are equally likely.
- Proportion of time a given tree is visited approximates posterior probabilities.

Most Popular Phylogeny Software

- PAUP
- PHYLIP

