Lecture 11
Phylogenetic trees

Principles of Computational Biology
Teresa Przytycka, PhD
Phylogenetic (evolutionary) Tree

- showing the evolutionary relationships among various biological species or other entities that are believed to have a common ancestor.
- Each node is called a taxonomic unit.
- Internal nodes are generally called hypothetical taxonomic units.
- In a phylogenetic tree, each node with descendants represents the most recent common ancestor of the descendants, and the edge lengths (if present) correspond to time estimates.
Methods to construct phylogenetic trees

• Parsimony
• Distance matrix based
• Maximum likelihood
Parsimony methods

The preferred evolutionary tree is the one that requires

“the minimum net amount of evolution”

[Edwards and Cavalli-Sforza, 1963]
Assumption of character based parsimony

- Each taxa is described by a set of characters
- Each character can be in one of finite number of states
- In one step certain changes are allowed in character states
- Goal: find evolutionary tree that explains the states of the taxa with minimal number of changes
<table>
<thead>
<tr>
<th>Taxon</th>
<th>+</th>
<th>△</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxon 1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 2</td>
<td>YES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Taxon 3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Taxon 6</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Ancestral states

4 Changes
Version parsimony models:

• **Character states**
 - Binary: states are 0 and 1 usually interpreted as presence or absence of an attribute (eg. character is a gene and can be present or absent in a genome)
 - Multistate: Any number of states (Eg. Characters are position in a multiple sequence alignment and states are A,C,T,G.

• **Type of changes:**
 - Characters are ordered (the changes have to happen in particular order or not.
 - The changes are reversible or not.
Variants of parsimony

- **Fitch Parsimony** unordered, multistate characters with reversibility
- **Wagner Parsimony** ordered, multistate characters with reversibility
- **Dollo Parsimony** ordered, binary characters with reversibility but only one insertion allowed per character. Characters that are relatively hard to gain but easy to lose (like introns)
- **Camin-Sokal Parsimony** - no reversals, derived states arise once only
- (binary) **prefect phylogeny** – binary and non-reversible; each character changes at most once.
Prefect – No
(triangle gained and the lost)

Dollo – Yes

Camin-Sokal – No (for the same reason as perfect)
Camin-Sokal Parsimony

But this is not prefect and not Dollo

Triangle inserted twice!

3 Changes
Homoplasy

Having some states arise more than once is called homoplasy.

Example – triangle in the tree on the previous slide
Finding most parsimonious tree

• There are exponentially many trees with n nodes
• Finding most parsimonious tree is NP-complete (for most variants of parsimony models)
• Exception: Perfect phylogeny if exists can be found quickly. Problem – perfect phylogeny is too restrictive in practice.
Perfect phylogeny

- Each change can happen only once and is not reversible.
- Can be directed or not

Example: Consider binary characters. Each character corresponds to a gene.

- 0-gene absent
- 1-gene present

It makes sense to assume directed changes only form 0 to 1. The root has to be all zeros
Perfect phylogeny

Example: characters = genes; 0 = absent; 1 = present
Taxa: genomes (A,B,C,D,E)

<table>
<thead>
<tr>
<th>genes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Perfect phylogeny tree

Goal: For a given **character state matrix** construct a tree topology that provides perfect phylogeny.
Does there exist prefect parsimony tree for our example with geometrical shapes?

There is a simple test
Character Compatibility

- Two characters A, B are compatible if there do not exist four taxa containing all four combinations as in the table.

- Fact: there exits perfect phylogeny if and only if and only if all pairs of characters are compatible.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Are not compatible

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Symbol 1</th>
<th>Symbol 2</th>
<th>Symbol 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxon 1</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 2</td>
<td>YES</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Taxon 3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 4</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Taxon 5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Taxon 6</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
One cannot add triangle to the tree so that no character changes its state twice:
If we add it to one of the left branches it will be inserted twice if to the right most – circle would have to be deleted (insertion and the deletion of the circle)
Ordered characters and perfect phylogeny

• Assume that we in the last common ancestor all characters had state 0.
• This assumption makes sense for many characters, for example genes.
• Then compatibility criterion is even simpler: characters are compatible if and only if there do not exist three taxa containing combinations \((1,0),(0,1),(1,1)\)
Example

Under assumption that states are directed form 0 to 1: if i and j are two different genes then the set of species containing i is either disjoint with set if species containing j or one of this sets contains the other.

The above property is necessary and sufficient for prefect phylogeny under 0 to 1 ordering

Why works: associated with each character is a subtree. These subtrees have to be nested.
Simple test for prefect phylogeny

• Fact: there exits perfect phylogeny if and only if and only if all pairs of characters are compatible

• Special case: if we assume directed parsimony (0→1 only) then characters are compatible if and only if there do not exist tree taxa containing combinations (1,0),(0,1),(1,1)

• Observe the last one is equivalent to non-overlapping criterion

• Optimal algorithm: Gusfield O(nm):

 \[n = \# \text{ taxa}; \ m = \# \text{characters} \]
Two version optimization problem:

Small parsimony: Tree is given and we want to find the labeling that minimizes #changes – there are good algorithms to do it.

Large parsimony: Find the tree that minimize number of evolutionary changes. For most models NP complete

One approach to large parsimony requires:
- generating all possible trees
- finding optimal labeling of internal nodes for each tree.

Fact 1: #tree topologies grows exponentially with #nodes

Fact 2: There may be many possible labels leading to the same score.
Clique method for large parsimony

- Consider the following graph:
 - nodes – characters;
 - edge if two characters are compatible

Max. compatible set

3,5 INCOMPATIBLE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>β</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>γ</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>δ</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ε</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ω</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Clique method (Meacham 1981) -

- Find maximal compatible clique (NP-complete problem)
- Each character defines a partition of the set into two subsets
Small parsimony

- Assumptions: the tree is known
- Goal: find the optimal labeling of the tree (optimal = minimizing cost under given parsimony assumption)
“Small” parsimony

Infer nodes labels
Application of small parsimony problem

- errors in data
- loss of function
- convergent evolution (a trait developed independently by two evolutionary pathways e.g. wings in birds and bats)
- lateral gene transfer (transferring genes across species not by inheritance)

Red – gene encoding N-acetylneuraminic acid lyase

Dynamic programming algorithm for small parsimony problem

• Sankoff (1975) comes with the DP approach (Fitch provided an earlier non DP algorithm)

• Assumptions
 – one character with multiple states
 – The cost of change from state v to w is $\delta(v,w)$ (note that it is a generalization, so far we talk about cost of any change equal to 1)
DP algorithm continued

\[s_t(v) = \text{minimum parsimony cost for node } v \text{ under assumption that the character state is } t. \]

\[s_t(v) = 0 \text{ if } v \text{ is a leaf. Otherwise let } u, w \text{ be children of } u \]

\[s_t(v) = \min_i \{ s_i(u) + \delta(i,t) \} + \min_j \{ s_j(w) + \delta(j,t) \} \]

Try all possible states in u and v

O(nk) cost where n=number of nodes
k = number of states
Exercise

Left and right characters are independent,
We will compute the left.

<table>
<thead>
<tr>
<th>$S_t(v)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Branch lengths

- Numbers that indicate the number of changes in each branch
- Problem – there may be many most parsimonious trees
- Method 1: Average over all most parsimonious trees.
- Still a problem – the branch lengths are frequently underestimated
Character patterns and parsimony

- Assume 2 state characters (0/1) and four taxa A, B, C, D
- The possible topologies are:

<table>
<thead>
<tr>
<th>Taxa</th>
<th>0 0 0 0</th>
<th>0 0 0 1</th>
<th>0 0 1 0</th>
<th>0 0 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D</td>
<td>0, 0, 0</td>
<td>1, 1, 1</td>
<td>1, 1, 1</td>
<td>1, 2, 2</td>
</tr>
</tbody>
</table>

Informative characters: xxxy, xyxy, xyyx
Let p, q character change probability.
Consider the three informative patterns $xxyy$, $xyxy$, $xyyx$
The tree selected by the parsimony depends which pattern has the highest fraction;
If $q(1-q) < p^2$ then the most frequent pattern is $xyxy$ leading to incorrect tree.
Distance based methods

• When two sequences are similar they are likely to originate from the same ancestor
• Sequence similarity can approximate evolutionary distances
Distance Method

• Assume that for any pair of species we have an estimation of evolutionary distance between them
 – eg. alignment score

• Goal: construct a tree which best approximates these distance
Consider weighted trees: \(w(e) = \text{weight of edge } e \)

Recall: In a tree there is a unique path between any two nodes.

Let \(e_1, e_2, \ldots e_k \) be the edges of the path connecting \(u \) and \(v \) then the distance between \(u \) and \(v \) in the tree is:

\[
d(u,v) = w(e_1) + w(e_2) + \ldots + w(e_k)
\]
Can one always represent a distance matrix as a weighted tree?

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

There is no way to add d to the tree and preserve the distances.
Quadrangle inequality

- Matrix that satisfies quadrangle inequality (called also the four point condition) for every four taxa is called additive.

- Theorem: Distance matrix can be represented precisely as a weighted tree if and only if it is additive.

\[d(a,c) + d(b,d) = d(a,d) + d(b,c) \geq d(a,b) + d(d,c) \]
Constructing the tree representing an additive matrix (one of several methods)

1. Start from a 2-leaf tree a,b where a,b are any two elements.
2. For $i = 3$ to n (iteratively add vertices)
 1. Take any vertex z not yet in the tree and consider 2 vertices x,y that are in the tree and compute
 \[
 d(z,c) = \frac{d(z,x) + d(z,y) - d(x,y)}{2}
 \]
 \[
 d(x,c) = \frac{d(x,z) + d(x,y) - d(y,z)}{2}
 \]
 2. From step 1 we know the position of c and the length of the branch (c,z). If c did not hit exactly a branching point add c and z. Else take as y any node from the sub-tree that branches at c and repeat steps 1,2.
Adding x:
\[d(x, c) = \frac{(d(u, x) + d(v, x) - d(u, v))}{2} = \frac{(5 + 9 - 10)}{2} = 2 \]
\[d(u, c) = \frac{(d(u, x) + d(u, v) - d(x, v))}{2} = \frac{(5 + 10 - 9)}{2} = 3 \]

Adding y:
\[d(y, c') = \frac{(d(u, y) + d(v, y) - d(u, w))}{2} = \frac{(5 + 9 - 10)}{2} = 2 \]
\[d(u, c') = \frac{(d(u, y) + d(u, v) - d(y, v))}{2} = \frac{(10 + 9 - 5)}{2} = 7 \]
Real matrices are almost never additive

• Finding a tree that minimizes the error
 Optimizing the error is hard

• Heuristics:
 – Unweighted Pair Group Method with
 Arithmetic Mean (UPGMA)
 – Neighborhood Joining (NJ)
Hierarchical Clustering

- **Clustering problem:** Group items (e.g. genes) with similar properties (e.g. expression pattern, sequence similarity) so that
 - The clusters are **homogenous** (the items in each cluster are highly similar, as measured by the given property – sequence similarity, expression pattern)
 - The clusters are well **separated** (the items in different clusters are different)

- **Hierarchical clustering** Many clusters have natural sub-clusters which are often easier to identify e.g. cuts are sub-cluster of carnivore sub-cluster of mammals

Organize the elements into a tree rather than forming explicit portioning
The basic algorithm

Input: distance array d; cluster to cluster distance function

Initialize:

1. Put every element in one-element cluster
2. Initialize a forest T of one-node trees (each tree corresponds to one cluster)

while there is more than one cluster

1. Find two closest clusters C_1 and C_2 and merge them into C
2. Compute distance from C to all other clusters
3. Add new vertex corresponding to C to the forest T and make nodes corresponding to C_1, C_2 children of this node.
4. Remove from d columns corresponding to C_1, C_2
5. Add to d column corresponding to C
A distance function

- \(d_{\text{ave}}(C_1, C_2) = \frac{1}{|C_1||C_2|} \sum_{x \in C_1, y \in C_2} d(x, y) \)

Average over all distances
Example (on blackboard)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>
Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

• Idea:
 – Combine hierarchical clustering with a method to put weights on the edges
 – Distance function used:

\[
d_{\text{ave}}(C_1, C_2) = \frac{1}{(|C_1||C_2|)} \sum_{x \in C_1, \ y \in C_2} d(x, y)
\]

 – We need to come up with a method of computing branch lengths
Ultrametric trees

• The distance from any internal node C to any of its leaves is constant and equal to $h(C)$

• For each node (v) we keep variable h – height of the node in the tree. $h(v) = 0$ for all leaves.
UPGMA algorithm

Initialization (as in hierarchical clustering); \(h(v) = 0 \)

while there is more than one cluster

1. **Find two closest clusters** \(C_1 \) and \(C_2 \) and merge them into \(C \)
2. **Compute** \(d_{\text{ave}} \) from \(C \) to all other clusters
3. **Add new vertex corresponding to** \(C \) to the forest \(T \) and make nodes corresponding to \(C_1, C_2 \) children of this node.
4. **Remove from** \(d \) **columns corresponding to** \(C_1, C_2 \)
5. **Add to** \(d \) **column corresponding to** \(C \)
6. \(h(C) = \frac{d(c_1, c_2)}{2} \)
7. **Assign length** \(h(C) - h(C_1) \) **to edge** \((C_1, C) \)
8. **Assign length** \(h(C) - h(C_2) \) **to edge** \((C_2, C) \)
Neighbor Joining

- **Idea:**
 - Construct tree by iteratively combing first nodes that are neighbors in the tree

- **Trick:** Figuring out a pair of neighboring vertices takes a trick – the closest pair want always do:

- B and C are the closest but are NOT neighbors.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Finding Neighbors

• Let \(u(C) = \frac{1}{(#\text{clusters}-2)} \sum_{C'} d(C,C') \)

• Find a pair \(C_1C_2 \) that minimizes
 \[
 f(C_1,C_2) = d(C_1,C_2) - (u(C_1)+u(C_2))
 \]

• Motivation: keep \(d(C_1,C_2) \) small while \((u(C_1)+u(C_2)) \) large
Finding Neighbors

• Let \(u(C) = \frac{1}{\text{#clusters}-2} \sum_{\text{all clusters C'}} d(C,C') \)

• Find a pair \(C_1C_2 \) that minimizes
 \[
 f(C_1,C_2) = d(C_1,C_2) - (u(C_1)+u(C_2))
 \]

• For the data from example:
 \[
 u(C_A) = u(C_D) = \frac{1}{2}(5+7+10) = 11
 \]
 \[
 u(C_B) = u(C_C) = \frac{1}{2}(5+4+7) = 8
 \]
 \[
 f(C_A,C_B) = 5-11 -8 = -14
 \]
 \[
 f(C_B,C_C) = 4- 8 -8 = -12
 \]
NJ algorithm

Initialization (as in hierarchical clustering); $h(v) = 0$

while there is more than one cluster

1. Find clusters C_1 and C_2 minimizing $f(C_1C_2)$ and merge them into C

2. Compute for all C^*: $d(C,C^*) = (d(C_1C) + d(C_2C))/2$

3. Add new vertex corresponding to C to the forest T and connect it to C_1, C_2

4. Remove from d columns corresponding to C_1, C_2

5. Add to d column corresponding to C

6. Assign length $\frac{1}{2}(d(C_1C_2) + u(C_1) - u(C_2))$ to edge C_1C

7. Assign length $\frac{1}{2}(d(C_1C_2) + u(C_2) - u(C_1))$ to edge C_2C
NJ tree is not rooted

The order of construction of internal nodes of NJ does not suggest an ancestral relation:
Rooting a tree

- Choose one distant organism as an out-group
Bootstrapping

• Estimating confidence in the tree topology

• Are we sure if this is correct?
• Is there enough evidence that A is a successor of B not the other way around?
Bootstrapping, continued

- Assume that the tree is build form multiple sequence alignment

Columns of the alignment

Select columns randomly
(with replacement)

Initial tree

New tree

Repeat, say 1000 times,
For each edge of initial tree calculate % times
it is present in the new tree

59%
Summary

• Assume you have multiple alignment of length N. Let T be the NJ tree build from this alignment.

• Repeat, say 1000 times the following process:
 – Select randomly with replacement N columns of the alignment to produce a randomized alignment
 – Build the tree for this randomized alignment

• For each edge of T report % time it was present in a tree build form randomized alignment. This is called the bootstrap value.

• Trusted edges: 80% or better bootstrap.
Maximum Likelihood Method

- Given is a multiple sequence alignment and probabilistic model of substitutions (like PAM model) **find the tree** which has the highest probability of generating the data.

- Simplifying assumptions:
 - Positions involved independently
 - After species diverged they evolve independently.
Formally:

- Find the tree T such that assuming evolution model M
 $\Pr[\text{Data}| T,M]$ is maximized
- From the independence of symbols:
 $\Pr[\text{Data}| T,M] = \prod_i \Pr[D_i| T,M]$

Where the product is taken over all characters i and D_i value of the character i is over all taxa
Computing $\Pr[D_i| T,M]$

$p(x,y,t) = \text{prob. of mutation } x \text{ to } y \text{ in time } t$
(from the model)

Consider all possible assignments here

$\Pr[D_i| T,M]$

$= \sum x \sum y \sum z$

$p(x)p(x,y,t_1)p(y,A,t_2)p(y,B,t_6)p(x,z,t_3)p(z,C,t_4)p(z,D,t_5)$
Discovering the tree of life

• “Tree of life” – evolutionary tree of all organisms

• Construction: choose a gene universally present in all organisms; good examples: small rRNA subunit, mitochondrial sequences.

• Things to keep in mind while constructing tree of life from sequence distances:
 – Lateral (or horizontal) gene transfer
 – Gene duplication: genome may contain similar genes that may evolve using different pathways. Phylogeny tree need to be derived based on orthologous genes.
Where we go with it...

- We now how to compute for given column and given tree $Pr[D_i|\ T,M]$
- Sum up over all columns to get $Pr[Data|\ T,M]$

Now, explore the space of possible trees

Problem:
- Bad news: the space of all possible trees is HUGE

Various heuristic approaches are used.
Metropolis algorithm: Random Walk in Energy Space

Goal design transition probabilities so that the probability of arriving at state \(j \) is

\[
P(j) = \frac{q(j)}{Z}
\]

(typically, \(q(S) = e^{-E(S)/kT} \), where \(E \) – energy)

\(Z \) – partition function = sum over all states \(S \) of terms \(q(s) \). \(Z \) cannot be computed analytically since the space is too large.
Monte Carlo, Metropolis Algorithm

• At each state \(i \) choose uniformly at random one of neighboring conformations \(j \).

• Compute \(p(i,j) = \min \left(1, \frac{q(i)}{q(j)} \right) \)

• With probability \(p(i,j) \) move to state \(j \).

• Iterate
MrBayes

• Program developed by J. Huelsenbeck & F. Ronquist.

• Assumption:

• \[q(i) = \text{Pr}[D| T_i, M] \]

 Prior probabilities: All trees are equally likely.

• Proportion of time a given tree is visited approximates posterior probabilities.
Most Popular Phylogeny Software

- PAUP
- PHYLIP