Lecture 2
Irwise sequence a

lignment.

Pa

1 Biology

10114

les Computat
Teresa Przytycka, PhD

Incip

Pr

Assumptions:

* Biological sequences evolved by evolution.

* Micro scale changes: For short sequences (€.g. one
domain proteins) we usually assume that evolution
proceeds by:

— Substitutions Human MSLICSISNEVPEHPCVSPVS ...

— Insertions/Deletions Protist MSIICTISGQTPEEPVIS-KT ...

* Macro scale changes: For large sequences (¢.g.
whole genomes) we additionally allow,
— Duplications
— reversals

— Protein segments known as domains are reused by
different proteins (via various mechanisms)

Importance of sequence comparison

Discovering functional and evolutional relationships
in biological sequences:

— Similar sequences = evolutionary relationship
— evolutionary relationship = related function

— Orthologs = same (almost same) function in different
organisms.

“=>7 should be read usually implies

Discovering sequence similarity by
dot plots

Given are two sequence lengths n and m respectively. Do they
share a similarity and if so in which region?

Dot-plot method: make n x m matrix with D and set D(1,j) = 1
if amino-acid (or nucleotide) position i in first sequence 1s
the same (or similar as described later) as the amino-acid
(nucleotide) at position j in the second sequence.

Print graphically the matrix printing dot for 1 and space for 0

Dot plot illustration

Diagonals from top

left to bottom right

correspond to regions
that are identical in

both sequences

The diagonals in the
perpendicular

direction correspond

to reverse matches

s

Deletion?
or

C |[T (C T
A
C O ®
T O O
C ® O
A
T O O
T O O
A
C O O

Mutation?

An example of a dot plot where the relation
between sequences in not obvious

= : o W e
. 1..._'_- 'l""'. . Yty e e
- . LIRS T S R
o w . ‘ % = ~ -
LA S l..l .:..l-l " " " . -
" L " W
- P e R, W L
-, -._"- = ':."-"l.. ", LTS
e . B - s
", s -'. 'H.."-."'_ o o - ™
e T
- Tty Ty, = .'-I -
'.- l.v-:. ﬂ. .'l ..':..] 3
e ‘ o
n .:- " 2 4 ﬂ)) S
(1 -, I { ¥
- | g e "
“ O . . - " -
L .. k A " PR 7'-.7'-. -
E " " -I:'I..l = : -‘-'- ", % l..l n .l-'. "
. b . . .7._'. s omon .
" T l-l.. " ", " ® L™
e e . -
v i I > R -':-.:.}
%"y, ! . L N
i Ny .) L
- By '“1._:': : ") G . " a s,

(In an obvious case we would see a long diagonal line)
Figure drawn with Dotter : www.cgb.ki.se/cgb/sonnhammer/Dotter.html

Removing noise in dot plots

Most of dots in a dot plot are by chance and
introduce a lot of noise.

Removing the noise: Put a dot ONLY if in
addition to the similarity in the given position
there is a similarity in the surrounding
positions (we look at in a “window™ of a size
given as a parameter).

Dot plot with window 3

A C|T |C A |A|T
® ®
®
® ®
O

Q|13 |0 |>

A dot is kept
only if there ware
a dots on both
sides of it on the
corresponding
diagonal

10

EXAMPLE: Genomic dot plots

In these comparisons, each dot corresponds to a pair of orthologous
genes The key feature of these plots 1s a distinct X-shaped pattern.
This suggests that large chromosomal inversions reversed the genomic
sequence symmetrically around the origin of replication; such

symmetrical inversions appear to be a common feature of bacterial
genome evolution.

S
3000 - 3000 7N

. - .
\ . . < . ”
J . .
. N 4’
4 LN .o
[N e

2500 N 2500

N
. N
4
. k ke
. . . ¥, . o
3 s o 1
3 NEaN
.

2000 - 4 2000

. A «
1500 /7 1500 s 25—

Vpa Chr |
Vpa Chr

. . . " UK
1000 1000 — - . N

. /’_
500 \ 500 ' /
. p . .
. . \ » A
o .
P .
, : N\ PSSR I N
0 0 R
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Vvu Chr Vch Chr |

OWEN: aliening long collinear regions of genomes

OWEN is an interactive tool for aligning two long DNA sequences that represents similarity
between them by a chain of collinear local similarities. OWEN employs several methods for

constructing and editing local similarities and for resolving conflicts between them.

& Owen i =]
File Construct Conflict Filter Select Edit Window Help
400001 . 2000000 chis:34100001-35100000
300001 . 1521201 gilsE70848 refiNT_002588.2] Mus rmusculus chr1? sequence
1G00000 4
B3 1170200 1170342 (143) BOSI00 . B95155 (146)
1500000 TA% 1174802 1174076 (B5) BOSSEE . GAIS03 (B4)
\ 72% 1176567 1176630 (73) BU2ES1 . GA2STE (7E)
1400000 4
BE%% 1177453 1177502 (50) GO2243 . GA2104 (50)
4300000 \ B5% 1177870 1178025 (156) 6O1931 . 691777 (155)
N B4% 1180644 1180708 (155) BROGET .. GAO729 (150)
] ™
1200000 \\ 71% 1180837 .. 1180913 (77) 639633 .. 659614 (76)
BN 7O 1181320 1161380 (61) BEO142 . BRA0OGT (56)
1100000+ ™.
-~ 7% 1182029 1162149 (121) GBGG45 . GAES2S (121)
1000000 4 Ta% 1182269 116233 (63) 660410 . GAG3S2 (59)
S
KRN B4% 1182332 1162618 (267) 6BG171 . GETE7E (203)
00000 .
\\ _
200000 _.. £5% 1183505 1163661 (157) BE7IE6 . GETZ31 (156)
TO% 1184349 11684469 (121) BEGESS0 . GAG431 (120)
7000004 ?T . 67% 1188531 .. 1155714 (184) 635115 .. 6a4941 (178)
.
. 95% 1205452 1205488 (37) BEIO64 . BEIG2E (37)
BO0000 R
T1% 1211233 1211400 (168) 670893 . 670719 (175)
n
5000004 R . TEW 1211944 1211993 (50) 670507 .. 670460 (48)
b
. T1% 1212100 ., 1212167 (68) 670379 .. 670310 (70)
4000004 i
- T4% 1212090 ., 1213083 (84) SE0227 .. 669134 (94)
S .
~ e |BE% 1214433 1214526 (94) 665652 . 668557 (96)
300000 T T T T T T T 1
400000 BO0000 BO0000 1000000 1200000 1400000 1600000 1G00000 2000000
ll2z2zc CCATTGC TG e T TG e T e TAL T T T AR T T T TAGC TAGAA T CTATAG———-CoTCA T O T AR G A CA AT C AL TT e TETC T TCTAGT AT TTT GO C TTAT TCAACACGAGTRAACTTGCCCTGOCATE 1122961
(I N R N e N R RN N R O O R R RN R RN R R N A R N A N RN R R R R N N R RN A RN RN R NN RN RA R IR AR AN
E87780 CTATCGCTTTCCTGT TAGC TGO CAT CTCCARCT-GTTTAGC TAGAGTCTATGGCCTCATCT TCT GARGGAGACA-TTGLAATTCCTATCTTI TG T GATGAGT TAGATCCTTGT TCACCAGAGTAACCTGGCTTGCCAT G EE7544
Aotion: Align Found: 34734 Added: 17 Total: 13&6E Conflicting: 0

Sequence alignment

Write one sequence along the other so that to expose
any similarity between the sequences. Each element of
a sequence 1s either placed alongside of corresponding
element 1n the other sequence or alongside a special
“gap’ character

Example: TGKGI and AGKVGL can be aligned as
TGK - GI
AGKVGL

Is there a better alighment? How can we compare the
“goodness” of two alignments.
We need to have:

— A way of scoring an alignment
— A way of computing maximum score alignment.

Identity score

Let (x,y) be an aligned pair of elements of two
sequences (at least one of x,y must not be a gap).

id(x, y)= { lifx=y
Oifx=y
Score of an alignment = sum of scores of aligned pairs
TGK - G
AGKVG

60 % 1dentical
0+1+14+0+1 =3

Gap penalties

Consider two pairs of alignments:

ATCG and AT-CG They have the same

ATTG ATT -G identity score but
alignment on the left is

more likely to be correct
ATC--TA and AT-C -TA

ATTTTTA ATTTTTA

* The first problem 1s corrected by introducing

“gap penalty .
* Second problem 1is corrected by introducing
additional penalty for opening a gap.

Example

Score the above alignment using identity score; gap penalty =1
Gap opening penalty = 2

ATCG AT-CG
ATTG ATT -G
+1+0+1=
1+IH+0+1=3 1+1-2-1-2-1+1=-3
ATC-- TA AT-C -TA
ATTTTTA ATTTTTA

1+1+0-2-1-1+1+1=0 1+1-2-1+0-2-1+1+1=-2

Problems with identity score

« In the two pairs of aligned sequence below there are
mutations at the first and 6™ position and insertion (or
deletion) on the 4™ position. However while V and A share
significant biophysical similarity and we often see
mutation between them, W and A do not often substitute
one for the other.

VGK -GI... WGK-GI...
AGKVGL... AGKVGL

 What if I mutated to V and then back to I should this have
the same score as when I was unchanged? If we will like to
use the score to estimate evolutionary distances it would
be wrong to consider them as 1dentical.

Scoring Matrices

An amino-acid scoring matrix 1s a 20x20 table such that position
indexed with amino-acids so that position X,Y in the table gives the
score of aligning amino-acid X with amino-acid Y

[dentity matrix — Exact matches receive one score and non-exact
matches a different score (1 on the diagonal 0 everywhere else)
Mutation data matrix — a scoring matrix compiled based on
observation of protein mutation rates: some mutations are
observed more often then other (PAM, BLOSUM).

Not used:

Physical properties matrix — amino acids with similar
biophysical properties receive high score.

Genetic code matrix — amino acids are scored based on
similarities in the coding triple.

(scoring matrices will be discussed during next class)

Principles of Dynamic programming

* Need to figure out how to use solution to
smaller problems for solving larger
problem.

* We need to keep a reasonable bound on
how many sub-problems we solve

* Make sure that each sub-problem 1s solved
only once

Dynamic programming algorithm for
computing the score of the best alignment

For a sequence S=a,, a,, ..., a,let S;=a, a,, ..., a,
S,S” — two sequences
Align(S;,S ;) = the score of the highest scoring alignment between
S1,,S2
S(a;, a’ ;)= similarity score between amino acids a; and a
given by a scoring matrix like PAM, BLOSUM

g — gap penalty

Align(S;.,,S i.1)+ S(a;, a’)
Align(S;,S j)=max) Align(S;,S i.1) - g
Align(Si_l,S,j) -g

Organizing the computation — dynamic
programming table

Align

Align(i,)) =
T +— Align(S;,S ;)= max

@T;;/

A4

/1]
[

/
/
/

Align(si-l 9S’j) - g
Align(S;,S'j.1) - g

/

T Align(Si_l,S’j-1)+ s(a;, a’ i)
\
\

initialization

> 00> 00 433>

Example of DP computation with

g = (0; match = 1; mismatch=(
Maximal Common Subsequence

T

T

=

0

1

0
1
2
2

2

1 1f gnatch else O

T T
|
N

c|lolo|lolo|lo|lolololoe| o

Initialization (penalty for starting with a gap)

> 00> 00 433>

Example of DP computation with

g = 2 match = 2;

mismatch = -1

-10

-12

-14

-16

-18

-20

-22

-2 k2 :"
4 |
-6
-8
410
12 +2 1f ma
14
.16 /
A
18 \ = ' -2
20 D lln

-22

ed -1 else

The iterative algorithm

m=S|;n =S|

fori < 0OtomdoA[i,0]€¢-1*%g
forj < O0OtondoA[0j]€< -)*¢
fori1 €< 1tomdo

forj < 1ton
Al1,j]€max (
All-1,)] - g
Afi-1,3-1] + s(i,))
Alz]'l] — 8
)

return(A[m,n])

Complexity of the algorithm

* Time O(nm); Space O(nm) where n, m the
lengths of the two sequences.

* Space complexity can be reduced to O(n) by
not storing the entries of dynamic
programming table that are no longer
needed for the computation (keep current
row and the previous row only).

From computing the score to
computing of the alignment

Desired output:

Sequence of substitutions/insertion/deletions leading to the optimal
score.

ATTGCGTTATAT
AT- GCG- TATAT

Red direction = mach
Blue direction = gap in horizontal sequence
Green direction = gap 1n vertical sequence

al’ az, cee. d: al’ a29 RS P al, az, aJ

J ’ ’ ’

’ ’ ’
al,az,...a' al,az,...,aj al9a29"'9aj

Recovering the path
AT T G

A IT f\<__ B
T po | I T :\

R | N
G y T Start path
C T X b — |1 from here!
ATTG - If at some position several choices lead
AT- GC to the same max value, the path need

not be unique.

Extra information not obligatory

Reducing space complexity in the
global alignment

Recall: Computing the score in linear space 1s easy.

Leaving “trace” for finding optimal alignment is harder. Why?

Let X be an optimal alignment between
OPT
y sequence X and y

X

y] can be obtained as

fix i, then there exist j such that ~ OFT [

x[1,...i-1] [i] x[1+1,..m]
OPT [Y[l,...,j—l]]+ i[;] T OPT [y[J-I-l,...,n]]
OR

x[1+1,...m]]

x[1,...1-1] i
OPT [y[1,....j]]-I- X[l T OPT [y[j+1,...,n]

Extra information — not obligatory

Computing which of the two cases holds and for
what value of j:

1. Use dynamic programming for to compute the scores a[i,j] for
fixed 1=n/2 and all j. O(nm/2)-time; linear space

2. Do the same for the suffixes. O(nm/2)-time; linear space

3. Find out which of the two cases from the previous case applies
and for which value of .

4. Apply 1 & 2 recursively for the sequences to the left of (1,))
and to the right of (i,)) (figure from previous slide)

Ignoring initial and final gaps —
semiglobal comparison

CAGCA - CTTGGATTCTCGG

- - CAGCGTGG - - - - - - - - No penalties for

these gaps

Recall the initialization step for the dynamic programming table:

A[0,i] =ig; A[j,0]=jg — these are responsible for initial gaps.
set them to zero!

How to 1gnore final gaps?

Take the largest value in the last row /column and trace-back form there

Example of DP computation

ignoring flanking gaps by assigning 0 to initial gap penalties

Av T T G C G CcC G c A T

(=1 IRl Bl el el E=2 =2 Ix=ly Iy Bl BNl Rl]

>0 004 >

1o ignore final gap penalties choose the highest scoring entry in last
column or last row and trace the path from there.
Trace back from the highest score in red row or column

Compressing the gaps

The two alignments below have the same score.
The second alignment is better.

ATTTTAGTAC ATTTTAGTAC
ATT- - AGTAC A-T-T -AGTAC

Solution: Have additional penalty for opening a gap

Affine gap penalty

w(k) =h+ gk ;h,gconstants

Interpretation: const of starting a gap: h+g, extending gap: +g

Naive extension of the previous

| alsorithm
Align ;
;7 — Rather than checking for the best of
\ Three values we have to check whole
1) — green row and blue column to consider
i | L — all possible gap lengths.

- That is find max over the following
max Over i

s(i ,j) — opening gap -g(gap length)
S(i_ 1 9j_ 1)
max over j’

s(i,j’) — opening gap -g(gap length)

Complexity O(n?)

General gap penalty

afi-1,j-1] + s(1,))
a[1,]]= max max b[1,J-k] — w(k) for 0 <=k<=1
max b[i-k,j] — w(k) for 0 <=k<=j

w(k) any gap penalty function (not necessarily afine)
k = size of a gap.

O(n?) algorithm for afine gap penalty

Let w(k) = h + gk
St S2 compared sequences

We will have 3 dynamic programming tables:

a[1,j] best possible alignment of S; and S';
b[i,j] best possible alignment of S; and S ; that ends with a gap in S
c[i,j] best possible alignment of S; and S ; that ends with a gap in S

N

Text Pevzner s book notation

Ny e

close gap

A three-level edit graph for alignment with affine gap pen:

Jonson & Pevzner

Jonson & Pevzner

Initialization

Assume that we charge for initial and terminal gaps

-infinity is assigned where no alignment possible

a[0,0
a[1,0

al0,).

— ()’ ' =-1 .
= - infinity (i<>0); EE){H - Eﬁgy
= -infinity (j<>0) |

c[1,0] = - (h+gi1)
c[0,j] = - infinity

Affine gap penalty function - cont

w(k)=h+ gk ;h,gconstants

Interpretation: const of starting a gap: h+g, extending gap: +g
Let a,b,c be as before. Now they can be completed as follows:
af[i-1,j-1] + s(i,))

ali,jI- max { blij]

c[i,]

a[1,)-1] — (h+g) --- start a new gap in first seq
b[1-1]-¢ -- extend gap in second first by one

More sophisticated gap penalties

* gap penalty can be made to dependent non-
linearly on length (e.g. as log function)

Let gap penalty be given by function w(k), where k-gap
length.

e if w(k) is an arbitrary function — O(n?) algorithm
* w(k) = log k (and other concave or convex functions)
- O(n?log n) algorithm (non-trivial)

Comparing similar sequences

Similar sequences — optimal alignment has small number of gaps.

-GCGC-ATGGATTGAGCGA
TGCGCCATGGAT-GAGC-A

GCGCATGGATTGAGCGA

T o]
G (e]
c [e]
G o
S 2 11 . h’
x o The “alignment pat
: S stays close to the
G
. R diagonal
x N
e [e]
¢ o
A
FIGURE 3.8

An optimal alignment and its corresponding path in the
dynamic programming matrix. A line is drawn along the
main diagonal.

From book Setubal Meidanis "Introduction Comp. Mol. Biol”

Speeding up dynamic programming
under assumption of small number of

gaps

Idea: Use only strip of width 2k+1 along the diagonal. The rest
of the array remains unused (and not initialized)

Modify the “max” expressions so that cell outside the strip are
not considered.

Time complexity O(kn)
Space complexity — 1f you store only cells that are used — O(kn)

Identifying diagonals:

Number the diagonals as follows:
0 — main diagonal

+1 1th diagonal above 0 diagonal
-1 1th diagonal below 0 diagonal

Simple test to find the number of diagonal for element a(1,)):

j-1

k-band alignment

n=|S|=|S]

fori < OtokdoA[i,0]<-1*¢g
forj < Otokdo A[0,j]< -] * ¢
for1 €< 1tondo

ford € -ktok

] =1+d;

if inside_strip(i,j,k) then:

A[1,j] € max (
if inside _strip(1-1,5,k) then A[i-1,j] — g else -infinity
Al1-1-1]+s(1)
if inside_strip(1-1,5,k) then A[1,j-1] — g else -infinity
)

return(A[m,n])

Where insid strip(i,j,k) is a test if cell A[i.j] is inside the strip that is if |i-j|<=k

Local alignment

* The alignment techniques considered so far
worked well for sequences which are similar over
all their length

» This does not need to be the case: example gene
from hox family have very short but highly
conserved subsequence — the so called hox
domain.

* Considered so far global alignment methods (that
1s algorithm that try to find the best alignment
over whole length can miss this local similarity
region

--T--CC-C-AGT--TATGT-CAGGGGACACG--A-CGCATGCAGA-CAC
GlObal\’llllllllllll 1 T O O B O B B

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

CccCAGTTATGTCAGgggacacgagcatgcagaga
Local > NERRRNRRREN

aattgccgeccgtecgttttcagCAGTTATGTCAGatc

"

-
o
-

O>CD)>G)>OG)—I>OG)J>G)O>O>G)G)G)G)>O—IG)—|>—l—|G)>OOO—l,

Local alignment (Smith, Waterman)

So far we have been dealing with global alignment.
Local alignment — alignment between substrings.
Main 1dea: If alignment becomes to bad — drop it.

Set p and g so that alignment of random strings gives negative
score

afi-1,J-1]+ s(aj, a))
a[1,]]= max { a[i-1,) +g

a[iaj'l]+ g

0

Finding the alignment: find the highest scoring cell and trace 1t back

gl ARl Bl ORGSR S Gy

Example

2.3 Alignment algorithms

23

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
b w
0 0 0 5 0 S 0 0 0 0 0
N w
0 0 0 0 2 0 20 12 « 4 0 0
®_ LN w
0 10« 2 0 0 0 12 18 22+« 14« 6
LN 4 LN w AN
0 2 16 « 8 0 0 4 10 18 28 20
i8N AN B 4 LN
0 0 8 2] « 13 5 0 4 10 20 27
i LN AN LN LN ®_
0 0 6 13 18 12« 4 0 4 16 26
AWGHE
AW-HE

Figure 2.6 Above, the local dynamic programming matrix for the example
sequences. Below, the optimal local alignment, with score 28,

Global/local comparison

A, GAP [Needleman-Wunsch aigorithm)
Percent Similarity: 44.651 Percent Identity: 38,279

1 MQTKKKP LTQEQLEDARHL KA YEKKKNE LGLSQESVADKMGMGQSGVGA a0

- R |

U B |-
IMNT. ..o QLMGER. . |RARRKK LKIRQAALGKMVGVSNVAISQ 37
51 LFNGI NALI\I!AYTAALITMI(I [LKVFVEEFSF'S I ARE | YEMir’EAVSMOPS LFS 100
38WERSETEPNGENLLALSKA LQCSPDYLLKGDLSQINVAYHS . . .RHEPRG 84

101 EYEYPVFSHVQAGMFSPEL RT FTKGDAERWVSTTKKASDSAFWLEVEGNS 150

AL

SYPLI %W%AGQIMAEAV EPYHKRA | ENWHDTTVDCSEDSFWLDVQGDS 132

151 MFAPTGSKPSFPDGML | LV DPEQAVEPGDFC I ARLGGD EFTFKKLIHDS 199

133 MTAPAG LS PEGMI I LV DP EVEPRNGKLVVAKLEGENEAT FKKLVMDA 180

200 (FQVII_%QTIT
181 GRKFLKPL

li-’ QYPMI PCNE SCSVVGKV I I\SC?WI"E ETFG 237

NPQYPMIE | NG NCKI IGVVVDAKLAN .LP 218

B. BESTFIT (Smith-Waterman algorithm)
Percent Simllarlty: 58.971 Percent Identity: 48.387

104 YPVYFSHYQAGMFSPE LI'ITFTKGD/\ERW\ISTTKKASDSAFWLEVEGNSMTA 183

|

Li- || | :
868 YPL ISWVS/\GQMMEAVEPYHKRA | ENWHDTTVDCSEDS FWLDVQ(:D MTA 135

154 PTGSKPS FPDGML | LVDPEOAVEPGDFC I AFlLGGD EFTFKKL | RDSGQV 202

R ool e [JTETT:

136 PAG LS ITPEGMI | LVDPEVEPHNGKLVVAKLEGENEAT FKKLVMDAGF!K 183
203 FLQP LNF’QYF’M | PCNESCSVVGKV I AS 229

§
184 FLKPLNPQYPM | E INGNCK 1 | GVVVDA 210

Global alignment gives lower score.

Pairwise alignment: a combination of
local and global alignments

l alignment

— — *semiglobal

- ->< - - - sglobal

Step 2 of FASTA

Locate best diagonal runs (gapless alignments) Give
positive score for each hot spot

— (1ve negative score for each space between hot spots
— Find best scoring runs

— Score the alignments from the runs and find ones above
a threshold. These are possible “sub-alignments”

Step 3 of FASTA

Combine sub-alignments into
one alignment.

We need to solve a problem
known as the chaining
problem : find a collection of
non-contradicting sub-
alignments that maximize
some scoring function.

Problem reduces to a problem
close to maximum common
subsequence.

