
Lecture 2
Pairwise sequence alignment.

Principles Computational Biology
Teresa Przytycka, PhD

Assumptions:
•  Biological sequences evolved by evolution.
•  Micro scale changes: For short sequences (e.g. one

domain proteins) we usually assume that evolution
proceeds by:
–  Substitutions Human MSLICSISNEVPEHPCVSPVS …

–  Insertions/Deletions Protist MSIICTISGQTPEEPVIS-KT …

•  Macro scale changes: For large sequences (e.g.
whole genomes) we additionally allow,
–  Duplications
–  reversals
–  Protein segments known as domains are reused by

different proteins (via various mechanisms)

Importance of sequence comparison

Discovering functional and evolutional relationships
in biological sequences:

–  Similar sequences ! evolutionary relationship
–  evolutionary relationship ! related function
–  Orthologs ! same (almost same) function in different

organisms.

“!” should be read usually implies

Discovering sequence similarity by
dot plots

Given are two sequence lengths n and m respectively. Do they
share a similarity and if so in which region?

Dot-plot method: make n x m matrix with D and set D(i,j) = 1

if amino-acid (or nucleotide) position i in first sequence is
the same (or similar as described later) as the amino-acid
(nucleotide) at position j in the second sequence.

Print graphically the matrix printing dot for 1 and space for 0

Dot plot illustration
T T A C T C A A T

A
C
T
C
A
T
T
A
C

Diagonals from top
left to bottom right
correspond to regions
that are identical in
both sequences

The diagonals in the
perpendicular
direction correspond
to reverse matches

Mutation?

Deletion?
 or

An example of a dot plot where the relation
between sequences in not obvious

(In an obvious case we would see a long diagonal line)
Figure drawn with Dotter : www.cgb.ki.se/cgb/sonnhammer/Dotter.html

Removing noise in dot plots

•  Most of dots in a dot plot are by chance and
introduce a lot of noise.

•  Removing the noise: Put a dot ONLY if in
addition to the similarity in the given position
there is a similarity in the surrounding
positions (we look at in a “window” of a size
given as a parameter).

Dot plot with window 3

T T A C T C A A T
A
C
T
C
A
T
T
A
C

 A dot is kept
only if there ware
a dots on both
sides of it on the
corresponding
diagonal

W = 10

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

Vvu Chr I

Vp
a

Ch
r I

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

Vch Chr I

Vp
a

Ch
r I

 EXAMPLE: Genomic dot plots
In these comparisons, each dot corresponds to a pair of orthologous
genes The key feature of these plots is a distinct X-shaped pattern.
This suggests that large chromosomal inversions reversed the genomic
sequence symmetrically around the origin of replication; such
symmetrical inversions appear to be a common feature of bacterial
genome evolution.

 OWEN: aligning long collinear regions of genomes
 OWEN is an interactive tool for aligning two long DNA sequences that represents similarity
between them by a chain of collinear local similarities. OWEN employs several methods for
constructing and editing local similarities and for resolving conflicts between them.

Sequence alignment
•  Write one sequence along the other so that to expose

any similarity between the sequences. Each element of
a sequence is either placed alongside of corresponding
element in the other sequence or alongside a special
“gap” character

•  Example: TGKGI and AGKVGL can be aligned as
 TGK - GI
 AGKVGL
•  Is there a better alignment? How can we compare the
“goodness” of two alignments.

•  We need to have:
–  A way of scoring an alignment
–  A way of computing maximum score alignment.

Identity score

Let (x,y) be an aligned pair of elements of two
sequences (at least one of x,y must not be a gap).

{ 1 if x= y
 0 if x ≠ y

id(x, y)=

 TGK - G
 AGKVG

Score of an alignment = sum of scores of aligned pairs

0+1+1+0+1 = 3
60 % identical

Gap penalties

•  The first problem is corrected by introducing
“gap penalty”.

•  Second problem is corrected by introducing
additional penalty for opening a gap.

ATCG
ATTG

and AT – C G
AT T - G

 They have the same
identity score but
alignment on the left is
more likely to be correct

AT - C - T A
AT T T T TA

ATC - - T A
ATT T T TA

Consider two pairs of alignments:

and

Example

ATCG
ATTG

AT – C G
AT T - G

AT - C - T A
AT T T T TA

ATC - - T A
ATT T T TA

Score the above alignment using identity score; gap penalty = 1
Gap opening penalty = 2

1+1+0+1=3 1+1-2-1-2-1+1=-3

1+1-2-1+0-2-1+1+1=-2 1+1+0-2-1-1+1+1=0

Problems with identity score

•  In the two pairs of aligned sequence below there are
mutations at the first and 6th position and insertion (or
deletion) on the 4th position. However while V and A share
significant biophysical similarity and we often see
mutation between them, W and A do not often substitute
one for the other.

 VGK – GI… WGK – GI…
 AGKVGL… AGKVGL
•  What if I mutated to V and then back to I should this have

the same score as when I was unchanged? If we will like to
use the score to estimate evolutionary distances it would
be wrong to consider them as identical.

Scoring Matrices

Identity matrix – Exact matches receive one score and non-exact
matches a different score (1 on the diagonal 0 everywhere else)
Mutation data matrix – a scoring matrix compiled based on
observation of protein mutation rates: some mutations are
observed more often then other (PAM, BLOSUM).
Not used:
Physical properties matrix – amino acids with similar
biophysical properties receive high score.
Genetic code matrix – amino acids are scored based on
similarities in the coding triple.

(scoring matrices will be discussed during next class)

An amino-acid scoring matrix is a 20x20 table such that position
indexed with amino-acids so that position X,Y in the table gives the
score of aligning amino-acid X with amino-acid Y

Principles of Dynamic programming

•  Need to figure out how to use solution to
smaller problems for solving larger
problem.

•  We need to keep a reasonable bound on
how many sub-problems we solve

•  Make sure that each sub-problem is solved
only once

Dynamic programming algorithm for
computing the score of the best alignment
For a sequence S = a1, a2, …, an let Sj = a1, a2, …, aj
S,S’ – two sequences
Align(Si,S’j) = the score of the highest scoring alignment between

S1
i,S2

j

S(ai, a’j)= similarity score between amino acids ai and aj
given by a scoring matrix like PAM, BLOSUM
 g – gap penalty

Align(Si,S’j)= max
Align(Si-1,S’j-1)+ S(ai, a’j)
Align(Si,S’j-1) - g
Align(Si-1,S’j) -g {

Organizing the computation – dynamic
programming table

Align(Si-1,S’j-1)+ s(ai, a’j)
Align(Si-1,S’j) - g
Align(Si,S’j-1) - g

Align(Si,S’j)= max

{

j

i

Align(i,j) =

Align

+s(ai,aj)
max

Example of DP computation with
g = 0; match = 1; mismatch=0

Maximal Common Subsequence

A T T G C G C G C A T

A
T
G
C
T
T
A
A
C
C
A

+1 if match else 0

max

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1

0 1 2 2 2 2 2 2 2

0 1 2

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

initialization

Example of DP computation with
g = 2 match = 2; mismatch = -1

A T T G C G C G C A T

A
T
G
C
T
T
A
A
C
C
A

+2 if matched -1 else

max
-2

-2

Initialization (penalty for starting with a gap)

0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22

-2 2 0 -2

-4 0 4

-6 6

-8

-10

-12

-14

-16

-18

-20

-22

 The iterative algorithm
 m = |S|; n = |S’|
 for i " 0 to m do A[i,0]"- i * g
 for j " 0 to n do A[0,j]" - j * g
 for i " 1 to m do
 for j " 1 to n
 A[i,j]"max (
 A[i-1,j] – g
 A[i-1,j-1] + s(i,j)
 A[i,j-1] – g
)
return(A[m,n])

Complexity of the algorithm

•  Time O(nm); Space O(nm) where n, m the
lengths of the two sequences.

•  Space complexity can be reduced to O(n) by
not storing the entries of dynamic
programming table that are no longer
needed for the computation (keep current
row and the previous row only).

From computing the score to
computing of the alignment

Desired output:

ATTGCGTTATAT
AT- GCG- TATAT

Sequence of substitutions/insertion/deletions leading to the optimal
score.

 a1, a2, …. aj
 a’1, a’2, … a’j

+s(ai,a’j)
max

Red direction = mach
Blue direction = gap in horizontal sequence
Green direction = gap in vertical sequence

a1, a2, …, aj -
 a’1, a’2, …, a’j

a1, a2, …….. aj
a’1, a’2, …, a’j -

Recovering the path

 A T T G -
 A T - G C

A T T G

A
T
G
C

If at some position several choices lead
to the same max value, the path need
not be unique.

Start path
from here!

Reducing space complexity in the
global alignment

Recall: Computing the score in linear space is easy.

Leaving “trace” for finding optimal alignment is harder. Why?

OPT [x
y] be an optimal alignment between

sequence x and y

fix i, then there exist j such that OPT [x
y] can be obtained as

OPT [x[1,…i-1]
y[1,…,j-1]] +

x[i]
y[j]

+ OPT
x[i+1,…m]
y[j+1,…,n] []

OPT [x[1,…i-1]
y[1,…,j]] +

x[i]
-

+ OPT
x[i+1,…m]
y[j+1,…,n] []

OR

Let

Extra information not obligatory

Computing which of the two cases holds and for
what value of j:

1.  Use dynamic programming for to compute the scores a[i,j] for
fixed i=n/2 and all j. O(nm/2)-time; linear space

2.  Do the same for the suffixes. O(nm/2)-time; linear space
3.  Find out which of the two cases from the previous case applies

and for which value of j.
4.  Apply 1 & 2 recursively for the sequences to the left of (i,j)

and to the right of (i,j) (figure from previous slide)

Extra information – not obligatory

Ignoring initial and final gaps –
semiglobal comparison

Recall the initialization step for the dynamic programming table:

A[0,i] = ig; A[j,0]=jg – these are responsible for initial gaps.
 set them to zero!

How to ignore final gaps?

CAGCA - CTTGGATTCTCGG
 - - - CAGCGTGG - - - - - - - -

No penalties for
these gaps

Take the largest value in the last row /column and trace-back form there

Example of DP computation

0 0 0 0 0 0 0 0 0 0 0 0

0 1 -1

0 1 2

0

0

0

0

0

0

0

0

0

A T T G C G C G C A T

A
T
G
C
T
T
A
A
C
C
A

+s(ai,aj)

max
-2

-2

ignoring flanking gaps by assigning 0 to initial gap penalties

To ignore final gap penalties choose the highest scoring entry in last
column or last row and trace the path from there.
Trace back from the highest score in red row or column

Compressing the gaps

Solution: Have additional penalty for opening a gap

ATTTTAGTAC
ATT- - AGTAC

ATTTTAGTAC
A-T-T -AGTAC

The two alignments below have the same score.
The second alignment is better.

w(k) = h + gk ; h,g constants

Interpretation: const of starting a gap: h+g, extending gap: +g

Affine gap penalty

Naïve extension of the previous
algorithm

j

i

Align

Rather than checking for the best of
Three values we have to check whole
green row and blue column to consider
all possible gap lengths.

That is find max over the following
max over i’
s(i’,j) – opening gap -g(gap_length)
s(i-1,j-1)
max over j’
s(i,j’) – opening gap -g(gap_length)

i’

Complexity O(n3)

General gap penalty

a[i,j]= max
a[i-1,j-1] + s(i,j)
max b[i,j-k] – w(k) for 0 <=k<=i
max b[i-k,j] – w(k) for 0 <=k<=j {

w(k) any gap penalty function (not necessarily afine)
 k = size of a gap.

O(n2) algorithm for afine gap penalty

We will have 3 dynamic programming tables:

s a[i,j] best possible alignment of Si and S’j
s b[i,j] best possible alignment of Si and S’j that ends with a gap in S

s c[i,j] best possible alignment of Si and S’j that ends with a gap in S’

Let w(k) = h + gk
S1, S2 compared sequences

Text Pevzner’s book notation

open new gap and
insert gap of length one

continue a gap

matching

close gap

a

b

c

Jonson & Pevzner

Jonson & Pevzner

Initialization
Assume that we charge for initial and terminal gaps

a[0,0] = 0;
 a[i,0] = - infinity (i<>0);
 a[0,j] = -infinity (j<>0)

b[i,0] = - infinity
b[0,j] = - (h+gj)

c[i,0] = - (h+gi)
c[0,j] = - infinity

-infinity is assigned where no alignment possible

Affine gap penalty function - cont

w(k) = h + gk ; h,g constants

Let a,b,c be as before. Now they can be completed as follows:

a[i,j]= max
a[i-1,j-1] + s(i,j)
b[i,j]
c[i,j] {

b[i,j]= max a[i,j-1] – (h+g) --- start a new gap in first seq
b[i,j-1] – g -- extend gap in second first by one {

c[i,j]= max a[i-1,j] – (h+g)
c[i-1,j] – g

{

Interpretation: const of starting a gap: h+g, extending gap: +g

More sophisticated gap penalties

•  if w(k) is an arbitrary function – O(n3) algorithm
•  w(k) = log k (and other concave or convex functions)
- O(n2 log n) algorithm (non-trivial)

Let gap penalty be given by function w(k), where k-gap
length.

•  gap penalty can be made to dependent non-
linearly on length (e.g. as log function)

Comparing similar sequences

Similar sequences – optimal alignment has small number of gaps.

The “alignment path”
stays close to the
diagonal

From book Setubal Meidanis”Introduction Comp. Mol. Biol”

Speeding up dynamic programming
under assumption of small number of

gaps
Idea: Use only strip of width 2k+1 along the diagonal. The rest
of the array remains unused (and not initialized)

Modify the “max” expressions so that cell outside the strip are
not considered.

Time complexity O(kn)
Space complexity – if you store only cells that are used – O(kn)

Identifying diagonals:

Number the diagonals as follows:
0 – main diagonal
+i ith diagonal above 0 diagonal
-i ith diagonal below 0 diagonal

Simple test to find the number of diagonal for element a(i,j):

 j-i

k-band alignment
 n = |S|= |S’|
 for i " 0 to k do A[i,0]"- i * g
 for j " 0 to k do A[0,j]" - j * g
 for i " 1 to n do
 for d " -k to k

 j = i+d;
 if inside_strip(i,j,k) then:
 A[i,j]"max (
 if inside_strip(i-1,j,k) then A[i-1,j] – g else -infinity
 A[i-1,j-1] + s(i,j)
 if inside_strip(i-1,j,k) then A[i,j-1] – g else -infinity
)
return(A[m,n])

Where insid _strip(i,j,k) is a test if cell A[i.j] is inside the strip that is if |i-j|<=k

Local alignment
•  The alignment techniques considered so far

worked well for sequences which are similar over
all their length

•  This does not need to be the case: example gene
from hox family have very short but highly
conserved subsequence – the so called hox
domain.

•  Considered so far global alignment methods (that
is algorithm that try to find the best alignment
over whole length can miss this local similarity
region

Global

Local

Local alignment (Smith, Waterman)

So far we have been dealing with global alignment.
Local alignment – alignment between substrings.
Main idea: If alignment becomes to bad – drop it.

a[i,j]= max
a[i-1,j-1]+ s(ai, aj)
a[i-1,j +g
a[i,j-1]+ g
0

{

Set p and g so that alignment of random strings gives negative
score

Finding the alignment: find the highest scoring cell and trace it back

Example

Global/local comparison

Global alignment gives lower score.

Pairwise alignment: a combination of
local and global alignments

alignment

• semiglobal

• global

Step 2 of FASTA

Locate best diagonal runs (gapless alignments) Give
positive score for each hot spot
–  Give negative score for each space between hot spots
–  Find best scoring runs
–  Score the alignments from the runs and find ones above

a threshold. These are possible “sub-alignments”

Step 3 of FASTA

•  Combine sub-alignments into
one alignment.

•  We need to solve a problem
known as the chaining
problem : find a collection of
non-contradicting sub-
alignments that maximize
some scoring function.

•  Problem reduces to a problem
close to maximum common
subsequence.

