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Assumptions: 
•  Biological sequences evolved by evolution. 
•  Micro scale changes: For short sequences (e.g. one 

domain proteins) we usually assume that evolution 
proceeds by: 
–  Substitutions               Human   MSLICSISNEVPEHPCVSPVS … 

–  Insertions/Deletions    Protist MSIICTISGQTPEEPVIS-KT …  

•  Macro scale changes: For large sequences (e.g. 
whole genomes) we additionally allow,  
–  Duplications 
–  reversals 
–  Protein segments known as domains are reused by 

different proteins (via various mechanisms) 
 



Importance of sequence comparison  

Discovering functional and evolutional relationships 
in biological sequences: 

 
–  Similar sequences ! evolutionary relationship 
–  evolutionary relationship ! related function 
–  Orthologs !  same (almost same) function in different 

organisms. 

“!” should be read usually implies  



Discovering sequence similarity by  
dot plots 

Given are two sequence lengths n and m respectively. Do they 
share a similarity and if so in which region? 

 
Dot-plot method: make n x m matrix with D and set D(i,j) = 1 

if amino-acid (or nucleotide) position i in first sequence is 
the same (or similar as described later) as the amino-acid 
(nucleotide) at position j in the second sequence. 

Print graphically the matrix printing dot for 1 and space for 0 
 



Dot plot illustration 
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Diagonals from top 
left to bottom right 
correspond to regions 
that are identical in 
both sequences 
 
The diagonals in the 
perpendicular 
direction correspond 
to reverse matches 

Mutation? 

Deletion? 
      or 



An example of a dot plot where the relation 
between sequences in not obvious 

(In an obvious case we would see a long diagonal line) 
Figure drawn with Dotter : www.cgb.ki.se/cgb/sonnhammer/Dotter.html  
 



Removing noise in dot plots  

•   Most of dots in a dot plot are by chance and 
introduce a lot of noise. 

•   Removing the noise: Put a dot ONLY if in 
addition to the similarity in the given position 
there is a similarity in the surrounding 
positions (we look at in a “window” of a size 
given as a parameter). 

 



Dot plot with window 3 
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   A dot is kept 
only if there ware 
a dots on both 
sides of it on the 
corresponding 
diagonal 
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 EXAMPLE: Genomic dot plots 
In these comparisons, each dot corresponds to a pair of orthologous 
genes The key feature of these plots is a distinct X-shaped pattern. 
This suggests that large chromosomal inversions reversed the genomic 
sequence symmetrically around the origin of replication; such 
symmetrical inversions appear to be a common feature of bacterial 
genome evolution. 



      OWEN: aligning long collinear regions of genomes 
      OWEN is an interactive tool for aligning two long DNA sequences that represents similarity 
between them by a chain of collinear local similarities. OWEN employs several methods for 
constructing and editing local similarities and for resolving conflicts between them.  



Sequence alignment 
•  Write one sequence along the other so that to expose 

any similarity between the sequences. Each element of 
a sequence is either placed alongside of corresponding 
element in the other sequence or alongside a special 
“gap” character 

•  Example:  TGKGI and AGKVGL can be aligned as 
         TGK - GI 
        AGKVGL 
•  Is there a better alignment? How can we compare the 
“goodness” of two alignments. 

•  We need to have: 
–  A way of scoring an alignment 
–  A way of computing maximum score alignment. 

 



Identity score 

Let (x,y) be an aligned pair of elements of two 
sequences (at least one of x,y must not be a gap).  

 

{  1 if x= y  
 0 if x ≠ y 

id(x, y)= 

 TGK - G 
 AGKVG 
 

Score of an alignment = sum of scores of aligned pairs 

0+1+1+0+1 = 3 
60 % identical 



Gap penalties 

•  The first problem is corrected by introducing 
“gap penalty”. 

•  Second problem is corrected by introducing 
additional penalty for opening a gap.  

ATCG 
ATTG 

and AT – C G 
AT T  - G 

 They have the same 
identity score but 
alignment on the left is 
more likely to be correct 

AT - C  - T A 
AT T T T TA 

ATC - -  T A 
ATT T T TA 

Consider two pairs of alignments: 

and 



Example 

ATCG 
ATTG 

AT – C G 
AT T  - G 

AT - C  - T A 
AT T T T TA 

ATC - -  T A 
ATT T T TA 

Score the above alignment  using identity score; gap penalty = 1 
Gap opening penalty = 2 

1+1+0+1=3 1+1-2-1-2-1+1=-3 

1+1-2-1+0-2-1+1+1=-2 1+1+0-2-1-1+1+1=0 



Problems with identity score 

•  In  the two pairs of aligned sequence below there are 
mutations at the first and 6th  position and insertion (or 
deletion) on the 4th position. However while V and A share 
significant biophysical  similarity and we often see 
mutation between them, W and A do not often substitute 
one for the other. 

        VGK – GI…     WGK – GI… 
         AGKVGL…     AGKVGL 
•  What if I mutated to V and then back to I should this have 

the same score as when I was unchanged? If we will like to 
use the  score to estimate evolutionary distances it would 
be wrong to consider them as identical.  

 



Scoring Matrices 

Identity matrix – Exact matches receive one score and non-exact 
matches a different score (1 on the diagonal 0 everywhere else) 
Mutation data matrix – a scoring matrix compiled based on 
observation of protein mutation rates: some mutations are 
observed more often then other  (PAM, BLOSUM). 
Not used:  
Physical properties matrix – amino acids with similar 
biophysical properties receive high score. 
Genetic code matrix – amino acids are scored based on 
similarities in the coding triple. 
 
(scoring matrices will be discussed during next class) 

An amino-acid scoring matrix is a 20x20 table such that position 
indexed with amino-acids so that position X,Y in the table gives the  
score of aligning amino-acid X with  amino-acid Y 



Principles of Dynamic programming 

•  Need to figure out how to use solution to 
smaller problems for solving larger 
problem. 

•  We need to keep a reasonable bound on 
how many sub-problems we solve 

•  Make sure that each sub-problem is solved 
only once  



Dynamic programming algorithm  for 
computing the score of the best alignment 
For a sequence S = a1, a2, …, an let  Sj = a1, a2, …, aj  
S,S’ – two sequences  
Align(Si,S’j) = the score of the highest scoring alignment between 

S1
i,S2

j  
                 
 

S(ai, a’j)= similarity score between amino acids ai and aj 
given by a scoring matrix like PAM, BLOSUM 
 g – gap penalty 

Align(Si,S’j)= max 
Align(Si-1,S’j-1)+ S(ai, a’j) 
Align(Si,S’j-1) - g 
Align(Si-1,S’j) -g { 



Organizing the computation – dynamic 
programming table 

Align(Si-1,S’j-1)+ s(ai, a’j) 
Align(Si-1,S’j) - g 
Align(Si,S’j-1) - g 

Align(Si,S’j)= max 

{ 

j 

i 

Align(i,j) =  

Align 

+s(ai,aj) 
max 



Example of DP computation with  
g = 0; match = 1; mismatch=0 

Maximal Common Subsequence  
 

A       T       T          G        C      G         C       G        C       A         T 

A 
T 
G 
C 
T 
T 
A 
A 
C 
C 
A 
 

+1 if match else 0 

max 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 1 1 1 

0 1 2 2 2 2 2 2 2 

0 1 2 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

initialization 



Example of DP computation with  
g = 2 match = 2;     mismatch = -1  

 
A       T       T          G        C      G         C       G        C       A         T 

A 
T 
G 
C 
T 
T 
A 
A 
C 
C 
A 
 

+2 if matched -1 else 

max 
-2 

-2 

Initialization (penalty for starting with a gap) 

0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 

-2 2 0 -2 

-4 0 4 

-6 6 

-8 

-10 

-12 

-14 

-16 

-18 

-20 

-22 



 The iterative algorithm 
 m = |S|; n = |S’| 
 for i " 0 to m do A[i,0]"- i * g 
 for j " 0 to n do A[0,j]" - j * g 
 for i " 1 to m do  
        for j " 1 to n 
             A[i,j]"max ( 
                                    A[i-1,j] – g 
                                    A[i-1,j-1] + s(i,j) 
                                    A[i,j-1] – g 
                                    ) 
return(A[m,n]) 
 



Complexity of the algorithm 

•  Time O(nm); Space O(nm) where n, m the 
lengths of the two sequences. 

•  Space complexity can be reduced to O(n) by 
not storing the entries of dynamic 
programming table that are no longer 
needed for the computation (keep current 
row and the previous row only).  



From computing the score to 
computing of the alignment 

Desired output: 

ATTGCGTTATAT 
AT- GCG- TATAT 

Sequence of substitutions/insertion/deletions leading to the optimal 
score. 

    a1, a2, ….   aj  
    a’1, a’2, … a’j  
 

+s(ai,a’j) 
max 

Red direction = mach 
Blue direction = gap in horizontal sequence 
Green direction = gap in vertical sequence 

a1, a2, …, aj  - 
 a’1, a’2, …, a’j  

a1, a2, ……..   aj  
a’1, a’2, …, a’j - 



Recovering the path 

  A T T G - 
  A T -  G C  
  

A     T      T       G  

A 
T 
G 
C 

If at some position several choices lead 
to the same max value, the path need 
not be unique. 

Start path 
from here! 



Reducing space complexity in the 
global alignment 

Recall: Computing the score in linear space is easy.  

Leaving “trace” for finding optimal alignment is harder. Why? 

OPT [ x 
y ] be an optimal alignment between 

sequence x and y 

fix i, then there exist j such that  OPT [ x 
y ] can be obtained as 

OPT [ x[1,…i-1] 
y[1,…,j-1] ] + 

x[i] 
y[j] 

+ OPT 
x[i+1,…m] 
y[j+1,…,n] [ ] 

OPT [ x[1,…i-1] 
y[1,…,j] ] + 

x[i] 
- 

+ OPT 
x[i+1,…m] 
y[j+1,…,n] [ ] 

OR 

Let 

Extra information not obligatory 



Computing which of the two cases holds and for 
what value of j: 

1.  Use dynamic programming for to compute the scores a[i,j] for 
fixed i=n/2 and all  j.  O(nm/2)-time; linear space 

2.  Do the same for the suffixes. O(nm/2)-time; linear space 
3.  Find out which of the two cases from the previous case applies 

and for which value of j. 
4.  Apply 1 &  2 recursively for the sequences to the left of (i,j) 

and to the right of (i,j) (figure from previous slide) 
 

Extra information – not obligatory 



Ignoring initial and final gaps – 
semiglobal comparison 

Recall the initialization step for the dynamic programming table: 
 
A[0,i] = ig; A[j,0]=jg – these are responsible for initial gaps. 
                                 set them to zero! 
 
How to ignore final gaps? 

CAGCA - CTTGGATTCTCGG 
 -  - - CAGCGTGG - - - - - - - - 

No penalties for 
these gaps 

Take the largest value in the last row /column and trace-back form there   



Example of DP computation 

0 0 0 0 0 0 0 0 0 0 0 0 

0 1 -1 

0 1 2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A       T       T          G        C      G         C       G        C       A         T 

A 
T 
G 
C 
T 
T 
A 
A 
C 
C 
A 
 

+s(ai,aj) 

max 
-2 

-2 

ignoring flanking gaps by assigning 0 to initial gap penalties 

To ignore final gap penalties choose the highest scoring entry in last 
column or last row and trace the path from there. 
Trace back from the highest score in red row or column 



Compressing the gaps 

Solution: Have additional penalty for opening a gap 

ATTTTAGTAC 
ATT- - AGTAC 

ATTTTAGTAC 
A-T-T -AGTAC 

The two alignments below have the same score.  
The second alignment is better. 

w(k) = h + gk       ; h,g constants 

Interpretation: const of starting a gap: h+g, extending gap: +g 

Affine gap penalty 



Naïve extension of the previous 
algorithm  

j 

i 

Align 

Rather than checking for the best of 
Three values we have to check whole 
green row and blue column to consider 
all possible gap lengths. 
 
That is find max over the following 
max  over i’ 
s(i’,j) – opening gap -g(gap_length) 
s(i-1,j-1) 
max over j’ 
s(i,j’) – opening gap -g(gap_length) 
 

i’ 

Complexity O(n3) 



General gap penalty 

a[i,j]=  max 
a[i-1,j-1] + s(i,j) 
max b[i,j-k] – w(k)  for 0 <=k<=i 
max b[i-k,j] – w(k) for 0  <=k<=j { 

w(k) any gap penalty function (not necessarily afine) 
 k = size of a gap. 



O(n2) algorithm for afine gap penalty  

We will have 3 dynamic programming tables: 
 
s a[i,j] best possible alignment of Si and S’j 
s b[i,j] best possible alignment of Si and S’j that ends with a gap in S 

s c[i,j] best possible alignment of Si and S’j that ends with a gap in S’ 

Let w(k) = h + gk  
S1,  S2 compared sequences 

Text Pevzner’s book notation 



open new gap and 
insert gap of length one 

continue a gap 

matching 

close gap 

a 

b 

c 

Jonson & Pevzner 



Jonson & Pevzner 



Initialization 
Assume that we charge for initial and terminal gaps 

a[0,0] = 0; 
 a[i,0] = - infinity (i<>0);  
 a[0,j] = -infinity (j<>0) 

b[i,0] = - infinity 
b[0,j] = - (h+gj) 

c[i,0] = - (h+gi) 
c[0,j] = - infinity 

-infinity is assigned where no alignment possible 



Affine gap penalty function - cont 

w(k) = h + gk       ; h,g constants 

Let a,b,c be as before. Now they can be completed as follows: 

a[i,j]= max 
a[i-1,j-1] + s(i,j)  
b[i,j] 
c[i,j] { 

b[i,j]= max a[i,j-1] – (h+g)      --- start a new gap in first seq 
b[i,j-1] – g             --  extend gap in second first by one { 

c[i,j]= max a[i-1,j] – (h+g) 
c[i-1,j] – g 
 

{ 

Interpretation: const of starting a gap: h+g, extending gap: +g 



More sophisticated gap penalties 

•   if w(k) is an arbitrary function – O(n3) algorithm  
•  w(k) =  log k (and other concave or convex functions) 
-  O(n2 log n) algorithm  (non-trivial) 

Let gap penalty  be given by function w(k), where k-gap 
length.  

•  gap penalty can be made to dependent non-
linearly on length (e.g. as log function) 



Comparing similar sequences 

Similar sequences – optimal alignment has small number of gaps. 

The “alignment path” 
stays close to the 
diagonal 

From book Setubal Meidanis”Introduction Comp. Mol. Biol” 



Speeding up dynamic programming 
under assumption of small number of 

gaps 
Idea: Use only strip of width 2k+1 along the diagonal. The rest 
of the array remains unused (and not initialized) 
 
Modify the “max” expressions so that cell outside the strip are 
not considered.  

Time complexity O(kn) 
Space complexity – if you store only cells that are used – O(kn) 



Identifying diagonals: 

Number the diagonals as follows:  
0 – main diagonal 
+i ith diagonal above 0 diagonal 
-i ith diagonal below 0 diagonal 

Simple test to find the number of diagonal for element a(i,j): 
 

   j-i 



k-band alignment 
 n = |S|= |S’| 
 for i " 0 to k do A[i,0]"- i * g 
 for j " 0 to k do A[0,j]" - j * g 
 for i " 1 to n do  
        for d " -k to k 

   j = i+d;  
          if inside_strip(i,j,k) then: 
             A[i,j]"max ( 
                                    if inside_strip(i-1,j,k)  then A[i-1,j] – g else -infinity 
                                    A[i-1,j-1] + s(i,j) 
                                    if inside_strip(i-1,j,k) then A[i,j-1] – g else -infinity 
                                    ) 
return(A[m,n]) 
 
Where insid _strip(i,j,k)  is a test if cell A[i.j] is inside the strip that is if  |i-j|<=k 



Local alignment 
•  The alignment techniques considered so far 

worked well for sequences which are similar over 
all their length 

•  This does not need to be the case: example  gene 
from hox family have very short but   highly 
conserved subsequence – the so called hox 
domain. 

•  Considered so far global alignment methods (that 
is algorithm that try to find the best alignment 
over whole length can miss this local similarity 
region 



Global 
 
Local 



Local alignment (Smith, Waterman) 

So far we have been dealing with global alignment. 
Local alignment – alignment between substrings. 
Main idea: If alignment becomes to bad – drop it. 

a[i,j]= max 
a[i-1,j-1]+ s(ai, aj) 
a[i-1,j +g 
a[i,j-1]+ g 
0 

{ 

Set p and g so that alignment of random strings gives negative 
score 

Finding the alignment: find the highest scoring cell and trace it back 



Example 



Global/local comparison 

Global alignment gives lower score.  



Pairwise alignment: a combination of 
local and global alignments 

alignment 

• semiglobal 

• global 



Step 2 of FASTA 

Locate best diagonal runs (gapless alignments) Give 
positive score for each hot spot 
–  Give negative score for each space between hot spots 
–  Find best scoring runs  
–  Score the alignments from the runs and find ones above 

a threshold. These are possible “sub-alignments” 



Step 3 of FASTA 

•  Combine sub-alignments into 
one alignment.  

•  We need to solve a problem 
known as the  chaining 
problem : find a collection of 
non-contradicting sub-
alignments that maximize 
some scoring function. 

•  Problem reduces to a problem 
close to maximum common 
subsequence. 

 


