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Biochemical pathways 
and interactomes

PTMs, phosphorylation Genetic variants, 
disease mutations

Nucleosomes

What do we study?



Methods
Bioinformatics Sequence alignment, structure superposition, annotation of 

domains, intrinsically disordered regions, functional sites
Programs: Blast, Vast, Muscle, IBIS, SPEER, CDD, …

Structural
Modeling

Homology modeling of protein structures and structural complexes
Programs: VMD, NAMD

Energy 
calculations

Empirical and statistical energy potentials, Molecular Mechanics 
Poisson-Boltzmann approach
Force fields and programs: CHARMM27, CHARMM36, FoldX, 
BeatMusic and PopMusic,…

Dynamics All-atom Molecular Dynamics simulations
Programs: NAMD

Evolutionary
analysis

Evolutionary conservation, phylogenetic analysis
Programs: Mega, PAML, FastTree, …
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Foldability & stability

Interactions

Expression & regulation

Pathways

Organismal level

Cellular level

Molecular level



Variation may arise through genetic mutations and 
rearrangements

Types of variations:
• missense mutations –

change in amino acid 
type;

• Insertion and deletions;
• Polypeptide chain 

truncations;
• Domain shuffling;
• Post-translational 

modifications From Romero & Arnold, Nat Rev Mol Cell Biol. 2009



From Das et al, Mol Biosystems 2014

Type of variation Number in 
human

De novo variants 50-100

SNV 3.5 million

nsSNV, sSNV 10,000-15,000

Protein loss-of-function 
nsSNV (from HGMD)

50-500 (50-
100)

Hundreds of mutations with unknown molecular mechanisms 

Intellectual disability

From Gilissen et al, Nature, 2014



Personal genomics meets biophysics

From Kroncke et al, Biochemistry 2015



Talk synopsis

• Impact of missense mutations on proteins: 
stability, binding and activity

• Deciphering the human protein interactome
with interactions with resolved binding 
interfaces



Why do we need to learn about the mechanisms 
of effect of mutations on proteins?

• To decipher how proteins evolved.
• To predict which mutations are damaging.
• To distinguish functionally important 

mutations, distinguish driver from passenger 
mutations.

• Prioritize mutations for experimental research.
• Drug design.



Protein stability

Protein function

Binding to other 
biomolecules

Post-translational modifications

Protein structure

Protein aggregation
Missense 
mutations



Evolutionary conservation is related to functional 
importance

From Kumar et al, Genome Research, 2009

Mutations in functionally 
relevant sites might be 
damaging. Many methods 
exploit this observation.

Methods that predict 
functional effects of 
mutations on proteins use 
evolutionary conservation 



Deciphering of molecular basis of mutational 
impacts

Stefl et al, JMB 2013
Li et al, Methods Mol Biol 2015



𝜟𝜟𝜟𝜟𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝒎𝒎𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂 - 𝜟𝜟𝜟𝜟𝒘𝒘𝒂𝒂𝒘𝒘𝒘𝒘 𝒎𝒎𝒂𝒂𝒕𝒕𝒕𝒕

𝒎𝒎𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂

𝜟𝜟𝜟𝜟𝜟𝜟𝒄𝒄𝒄𝒄𝒎𝒎𝒎𝒎𝒄𝒄𝒕𝒕
𝒎𝒎𝒂𝒂𝒂𝒂𝒂𝒂𝒎𝒎𝒂𝒂𝒎𝒎𝒂𝒂

mutwtbind GGG ∆−∆=∆∆

Effects of missense mutations on protein-protein binding 
affinity 

+

Modified Molecular Mechanics Poisson-Boltzmann Surface Area approach

Li et al, J Chem Theory & Comput, 2014



Energy terms

Polar solvation energies of a complex and 
each interacting partner in water, from 
Poisson-Boltzmann equation;

Van der Waals energies of complex and each 
interacting partner;

Unfolding free energy of mutant and wild 
type, from BuildModel module of FoldX. 

Solvent accessibility of wild type and mutant 
site

Evolutionary conservation and accounts for 
the sequence context around the mutated 
site. 

Li et al, submitted 



How to minimize mutant and wild type structures

Wild-type PDB  
structures

Minimization
(NAMD)

Mutation structures
(VMD)

Without restrains on 
the backbone atoms 
upon minimization

(NAMD)

Solvent model or gas 
phase (VMD)

With restrains on the 
backbone atoms upon 

minimization

1ns unconstrained 
Molecular Dynamics 

(MD) simulations

Li et al, J Chem Theory & Comput, 2014
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Performance of method

MutaBind

MutaBind

MutaBind

MutaBind

SKEMPI - database of experimental ddG values 
(Moal et al, Bioinformatics 2012) – 1844 
mutations



Factors influencing prediction quality

1. Locations of mutations 

From Levy, J Mol Biol, 2010



Factors influencing prediction quality
2. Volume and charge of substituted amino acids



Factors influencing prediction quality

Method Training/testing Destabilizing Stabilizing

Pred2 SKEMPI/NM 100% 7%

CC/PBSA NM/NM 99% 32%

FoldX test: NM 72% 48%

test: SKEMPI 67% 41%

BeatMusic test: NM 95% 23%

Test: SKEMPI 90% 18%

3. Low accuracy of predicting stabilizing mutations, 
probably due to lack of stabilizing mutants in experimental 
data sets



Factors influencing prediction quality
4. Difficult to adequately account for the flexibility of proteins.

Simulation 
methiod

Flexibility Cross-
validated R

RMSE 
(kcal/mol)

Minimization Flexible 
backbone

0.61 1.22

1ns MD 
simulations

Flexible 
backbone

0.26 1.48





Mechanisms of action of cancer 
mutations: CBL case



CBL ubiquitin ligase - CBL

From Lipkowitz & Weissman, Nature Reviews Cancer, 2011



CBL ubiquitin ligase activation cycle



Cancer mutations impact CBL stability and 
CBL-E2 binding

~110 cancer and 2100 random missense mutations

P-value << 0.01 P-value << 0.01

Li et al, Cancer Research, 2016



Homozygous mutations and mutations found in 
Zn-clusters and leukemia patients have largest 

effects



Experimental verification of activity of CBL mutants
HEK293T - human embryonic kidney cells A549 - human nonsmall cell lung cancer cells  

HELA - cervical cancer cells 

Li et al, Cancer Research, 2016



Comparing experiments and computational models

Methods to predict phetypic effects

Li et al, Cancer Research, 2016



Stability-activity tradeoff

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑊𝑊𝑊𝑊

~𝑒𝑒−ΔΔ𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓



K382E mutations significantly destabilizes the 
closed and active CBL states



Effect of OMIM nsSNPs on protein complex stability

ΔΔΔG(total) 
kcal/mol

ΔΔΔG(van der 
Waals)
kcal/mol

G(electrostatic) 
kcal/mol

OMIM -1.65 -1.03 -2.35

Non-OMIM -0.70 0.14 -0.45

• OMIM mutations destabilize 
electrostatic components of 
binding energy;

• Largest effect of mutations is 
observed at evolutionary 
conserved sites.

Teng et al, Biophysical Journal, 2009

Mean values of ΔΔΔG distributions

p-value > 0.01 p-value > 0.01 p-value =0.006



Effect of glioblastoma mutations on protein binding

Binding energy difference upon 
mutation for electrostatic and van-

der-Waals components

Physico-chemical distances between 
mutations on protein-protein interfaces 

and non-interface regions

p-value=0.01

p-value=0.006

Nishi et al, Plos One, 2013



Topological properties of mutated gene network

AI – 444 interactions between 
proteins with mutation anywhere 
in protein
MI – 160 interactions between 
proteins with mutation on 
interface

Interactions with mutations occur 
in central network positions!

number of shortest paths going through a node

P-value << 0.01



Protein-protein
ABL2
ARL1
EPHA2
IDH1
NLGN2
NRAS
RAB3C
RAC2
RAD52
TP53
Protein-DNA
BCL11A
PAX9
TP53
ZIK1
ZNF339
Protein-RNA
ELAVL2
KLK9
RBMS3
RPL11
Protein-ion
ADAMTS17
DSG4
GZMH
HPCAL4
LCT
LMX1A
MAPK9
NELL2
SGK2
TP53
ZIK1
ZNF497

Zinc binding motif of 
LMO-2 (homolog of 
LMX1A) , CY

DNA binding site 
of Pax-6, RW Protein-ion 

binding site of 
MAPK10, GR

Predicted driver mutations



Mutations in DNA-binding loop of NFAT5 produce unique 
outcomes on binding and dynamics

Complex - DNA Chain C - DNA Chain D - DNA Chain C – Chain D

Native 10.00 (0.62) 3.61 (0.39) 2.89 (0.39) 2.73 (0.23)

T298D 9.24 (0.54) 3.79 (0.23) 2.76 (0.23) 2.92 (0.23)

R293, E299, R302 6.47 (0.62) 3.13 (0.23) 2.36 (0.23) 2.78 (0.31)

Li et al, J of Phys Chem, 2013

Binding energy, kcal/mol

Izumi et al, Am J Physiol Cell Physiol. 2012 (experimental data from M. Burg’s lab)



Phosphomimetic mutation T298D constraints movements of 
two chains
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Changes in conformation , Molecular Dynamics 
simulations (NAMD program, explicit solvent)

Effect of T298D on structure,
formation of an extra salt bridge 
between two chains in a dimer

Li et al, J of Phys Chem, 2013

triple mutant

T298D mutant

WT



Reality: PPI Interactomes

All hairball graphs look alike



Protein interactions in the cell

Illustration by David S Goodsell



Structural interactomes are 
informative and useful

• Interactome with structural details:
– Which proteins interact?
– How they interact:

• Which domains interact?
• Which residues form binding sites?

• Atomic-resolution interfaces are needed to study:
– The mechanisms of interactions.
– The effects of mutations on stability of proteins and their 

complexes.
– To modulate interactions (drugs)

• Strategies:
– Use available structures of protein complexes.
– Dock structural monomers if structural complex is not available.
– Template-based modeling of protein complexes (or interfaces).



What do we have so far? Growth of 
structural and PPI data



Conservation of protein interactions and oligomeric
states

Conservation of interactions partners

Conservation of oligomeric states 

monomerdimer

Hashimoto et al, PNAS, 2010

Sensitivity TP/(TP + FN) Specificity TN/(FP + TN)

Presence/absence of 
enabling and disabling 
features

0.70 0.74

Percent identity 0.71 0.62

RMSD 0.72 0.60

Rate of PPI evolution = (2.6 ± 1.6) × 10−10
per PPI per year



Different protein complexes might have similar 
binding interfaces

Dayhoff et al, J Mol Biol, 2010
Goncearenco et al, Biophysical J, 2015

percent identity

significant conservation



Tracing back evolution of protein binding sites to the 
root of all organisms

Goncearenco et al, Biophysical J, 2015.



The underlying interolog hypothesis
• If proteins are similar they

may interact in a similar way
• Homologs may have similar interfaces



IBIS – NCBI server to analyze interactions and binding sites 
http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

Observed interactions – from structural complexes
Inferred interactions – from homologous structures with observed 

interactions
Types of interactions: protein-protein, protein-nucleic acids, protein-

small molecule, protein-peptide, protein-ion

Biological relevance of binding sites:
 occurs in several non-redundant homologs;
 structurally and sequence conserved;
 validated biounit

Shoemaker et al,  Nucleic Acids Res,  2010
Shoemaker et al,  Nucleic Acids Res,  2012







Modeling of interactions and interfaces

Verification:
- minimization of complex;
- interface complementarity;
- interface conservation;
- co-localization;
- co-expression.

Structural PPI complex Library of interfaces Model of human 
interface/complex



Mapping of human interactome using structural complexes
4400 human genes
20000 interactions

Tyagi et al, EMBO Rep, 2012
 

∆ ij =1−
Γi ∩ Γj

Γi ∪ Γj

Γi - list of attributes 
for protein i (GO or 
pathway annotations), 

Structurally inferred networks (SI) are 
more functionally coherent than high-
throughput networks (HTP, HC)



Challenges in computational analysis and 
prediction of PPI

Highly variable regions

Interactions with other moleculesHigher oligomers

Substantial conformational changes



Benchmarking predicted PPIs 

• Residue level:
– Positive set: interface residues in PDB structures
– Negative set: non-interface residues

• Protein level:
– Positive set: pairs of protein with experimentally 

identified interactions (typically Y2H)
– Negative set: ?



Residue level benchmark on structural 
complexes from yeast

Twilight zone (up to 25% identity)

Daylight zone (up to 98% identity)

Goncearenco et al, to be submitted



Protein-level benchmarks with
in vitro Y2H PPI data

Experimental data from: 
Rajagopala et al. Nat Biotechnol 2014

Yu et al. Science 2008
Goncearenco et al, to be submitted

E. coli S. cerevisiae
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