Triple helix formation in amphiphilic discotics: demystifying solvent effects in supramolecular self-assembly

J Am Chem Soc. 2014 Jan 8;136(1):336-43. doi: 10.1021/ja4104183. Epub 2013 Dec 19.

Abstract

A set of chiral, amphiphilic, self-assembling discotic molecules based on the 3,3'-bis(acylamino)-2,2'-bipyridine-substituted benzene-1,3,5-tricarboxamide motif (BiPy-BTA) was prepared. Amphiphilicity was induced into the discotic molecules by an asymmetrical distribution of alkyl and oligo(ethylene oxide) groups in the periphery of the molecules. Small-angle X-ray scattering, cryogenic transmission electron microscopy, and circular dichroism spectroscopy measurements were performed on the discotic amphiphiles in mixtures of water and alcohol at temperatures between 0 °C an 90 °C. The combined results show that these amphiphilic discotic molecules self-assemble into supramolecular fibers consisting of either one or three discotic molecules in the fiber cross-section and that the presence of water induces the bundling of the supramolecular fibers. The rich phase behavior observed for these molecules proves to be intimately connected to the mixing thermodynamics of the water-alcohol mixtures.