Stimulus-induced association of Ca(2+)-binding proteins with the plasma membrane detected in situ by photolabeling of intact chromaffin and PC12 cells

Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1295-9. doi: 10.1073/pnas.90.4.1295.

Abstract

To investigate the involvement of cytosolic proteins in exocytosis, a system with high temporal and spatial resolution has been developed that allows us to detect the interaction of Ca(2+)- and membrane-binding proteins with the plasma membrane during stimulation of intact chromaffin and PC12 (rat pheochromocytoma) cells. We used 5-iodonaphthalene-1-azide (INA), a hydrophobic label that rapidly partitions into the lipid bilayer of biological membranes. Upon photolysis the label covalently attaches to membrane-embedded domains of proteins. Cells, preincubated with INA in the dark, were stimulated by either 300 microM carbamoylcholine or 60 mM K+ and irradiated (20 s) at various time intervals after stimulation. Subsequently, the cytosolic Ca(2+)- and membrane-binding proteins were isolated in the presence of EGTA (EGTA extract). Of the approximately 40 proteins in the EGTA extract, 15 (15-100 kDa) are labeled in both cell types. Upon stimulation, labeling is increased up to 3-fold in some of the proteins compared to cells labeled under basal conditions. In the absence of external Ca2+, no increase is observed. The rate of label incorporation is similar to the rate of exocytosis in several of these proteins. These results indicate that in the event of triggered exocytosis some of the Ca(2+)-binding proteins interact with the plasma membrane and temporarily embed in the lipid bilayer. Our findings support the hypothesis according to which stimulus-induced alterations in the structure of the Ca(2+)-binding proteins lead to their transient insertion into the membrane and thereby to membrane fusion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenal Medulla / drug effects
  • Adrenal Medulla / metabolism*
  • Animals
  • Autoradiography
  • Azides / metabolism
  • Calcium-Binding Proteins / isolation & purification
  • Calcium-Binding Proteins / metabolism*
  • Carbachol / pharmacology*
  • Cattle
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism*
  • Cells, Cultured
  • Egtazic Acid / pharmacology
  • Electrophoresis, Polyacrylamide Gel
  • Iodine Radioisotopes
  • Kinetics
  • Lipid Bilayers / metabolism
  • Membrane Lipids / metabolism
  • Molecular Weight
  • PC12 Cells
  • Potassium / pharmacology*

Substances

  • Azides
  • Calcium-Binding Proteins
  • Iodine Radioisotopes
  • Lipid Bilayers
  • Membrane Lipids
  • Egtazic Acid
  • iodonaphthylazide
  • Carbachol
  • Potassium