Physical-chemical properties of the estrogen receptor solubilized by micrococcal nuclease

J Steroid Biochem. 1985 Aug;23(2):137-43. doi: 10.1016/0022-4731(85)90228-6.

Abstract

The physical-chemical properties of the nuclear estrogen receptor from MCF-7 cells were determined. The receptor was solubilized by micrococcal nuclease. Nuclei were isolated from cells previously exposed to 10 nM [3H]estradiol. The amount of receptor released was parallel to the extent of chromatin solubilized, which suggested that the receptor is homogeneously distributed on the chromatin. Following mild nuclease digestion the excised receptor sedimented as an abundant 6-7 S form and as a less abundant approximately 12 S species. The 6-7 S form represented the receptor excised in association with linker DNA, while the approximately 12 S may represent receptor bound to linker DNA which remained associated with the nucleosome. Increasing the extensiveness of digestion resulted in one receptor form sedimenting at 5.6 S. Additional digestion with DNase I did not affect the sedimentation coefficient of the receptor. Sedimentation of the micrococcal nuclease hydrolysate in a 0.4 M KCl sucrose gradient resulted in a 4.2 S receptor form. The same receptor form was extracted from undigested nuclei with 0.4 M KCl. Using Sephadex G-200 column chromatography we have determined the Stokes radii (Rs), molecular weight (Mr) and frictional ratio (f/fo) for the 5.6 S and 4.2 S receptor forms. For the 5.6 S form: Rs = 7.04 nm, Mr = 163,000 and (f/fo) = 1.80. For the 4.2 S receptor, Rs = 4.45 nm, Mr = 77,000 and (f/fo) = 1.46. The ability of the nuclease solubilized 5.6 S receptor to bind DNA was tested using DNA-cellulose column and highly polymerized DNA. About 40% of the applied receptor bound to the column and could be eluted by high salt concentrated buffer. The 5.6 S receptor form was sedimented on sucrose gradient by the highly polymerized DNA. These results suggested that the receptor is bound in chromatin as a dimer or as a monomer in association with other protein(s) which complexed it with DNA.

MeSH terms

  • Breast Neoplasms
  • Cell Line
  • Cell Nucleus / metabolism
  • Centrifugation, Density Gradient
  • Chromatography, Affinity
  • Chromatography, Gel
  • Female
  • Humans
  • Micrococcal Nuclease
  • Molecular Weight
  • Receptors, Estrogen / isolation & purification*
  • Receptors, Estrogen / metabolism
  • Solubility

Substances

  • Receptors, Estrogen
  • Micrococcal Nuclease