Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks

J Tissue Eng. 2021 Feb 24:12:2041731421997091. doi: 10.1177/2041731421997091. eCollection 2021 Jan-Dec.

Abstract

Decellularized extracellular matrix-based bio-inks (dECM bio-inks) for bioprinting technology have recently gained attention owing to their excellent ability to confer tissue-specific functions and 3D-printing capability. Although decellularization has led to a major advancement in bio-ink development, the effects of detergent type, the most important factor in decellularization, are still unclear. In this study, the effects of various detergent types on bio-ink performance were investigated. Porcine liver-derived dECM bio-inks prepared using widely used detergents, including sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), Triton X-100 (TX), and TX with ammonium hydroxide (TXA), were characterized in detail. SDS and SDC severely damaged glycosaminoglycan and elastin proteins, TX showed the lowest rate of decellularization, and TXA-based dECM bio-ink possessed the highest ECM content among all bio-inks. Differences in biochemical composition directly affected bio-ink performance, with TXA-dECM bio-ink showing the best performance with respect to gelation kinetics, intermolecular bonding, mechanical properties, and 2D/3D printability. More importantly, cytocompatibility tests using primary mouse hepatocytes also showed that the TXA-dECM bio-ink improved albumin secretion and cytochrome P450 activity by approximately 2.12- and 1.67-fold, respectively, compared with the observed values for other bio-inks. Our results indicate that the detergent type has a great influence on dECM damage and that the higher the dECM content, the better the performance of the bio-ink for 3D bioprinting.

Keywords: 3D bioprinting; Bio-ink; decellularization; detergent.