NOD-like receptors in autoimmune diseases

Acta Pharmacol Sin. 2021 Nov;42(11):1742-1756. doi: 10.1038/s41401-020-00603-2. Epub 2021 Feb 15.

Abstract

Autoimmune diseases are chronic immune diseases characterized by dysregulation of immune system, which ultimately results in a disruption in self-antigen tolerance. Cumulative data show that nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) play essential roles in various autoimmune diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, multiple sclerosis (MS), etc. NLR proteins, consisting of a C-terminal leucine-rich repeat (LRR), a central nucleotide-binding domain, and an N-terminal effector domain, form a group of pattern recognition receptors (PRRs) that mediate the immune response by specifically recognizing cellular pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and triggering numerous signaling pathways, including RIP2 kinase, caspase-1, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and so on. Based on their N-terminal domain, NLRs are divided into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. In this review, we briefly describe the structures and signaling pathways of NLRs, summarize the recent progress on NLR signaling in the occurrence and development of autoimmune diseases, as well as highlight numerous natural products and synthetic compounds targeting NLRs for the treatment of autoimmune diseases.

Keywords: NOD-like receptors; autoimmune diseases; botanicals; inflammasomes; inhibitors; pattern recognition receptors.

Publication types

  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / drug therapy*
  • Autoimmune Diseases / immunology
  • Autoimmune Diseases / metabolism*
  • Furans / administration & dosage
  • Furans / immunology
  • Furans / metabolism
  • Humans
  • Indenes / administration & dosage
  • Indenes / immunology
  • Indenes / metabolism
  • NLR Proteins / antagonists & inhibitors*
  • NLR Proteins / immunology
  • NLR Proteins / metabolism*
  • Pyridines / administration & dosage
  • Pyridines / immunology
  • Pyridines / metabolism
  • Sulfonamides / administration & dosage
  • Sulfonamides / immunology
  • Sulfonamides / metabolism

Substances

  • Furans
  • Indenes
  • NLR Proteins
  • NX-13
  • Pyridines
  • Sulfonamides
  • N-(1,2,3,5,6,7-hexahydro-S-indacen-4-ylcarbamoyl)-4-(2-hydroxy-2-propanyl)-2-furansulfonamide