Participation of the endothelium in the development of the atherosclerotic plaque

Prog Lipid Res. 1986;25(1-4):365-74. doi: 10.1016/0163-7827(86)90074-3.

Abstract

In the past decade, initiated by the response-to-injury hypothesis of Ross and Glomset, the endothelium has been implicated in atherogenesis but as a passive participant--more involved through its absence than its presence. The hypothesis stated that endothelial desquamation due to an undefined injury led to platelet adhesion to the exposed basement membrane, and infiltration of serum lipoproteins. The subsequent release from the platelet alpha-granule of a potent smooth muscle cell mitogen and chemoattractant--the platelet-derived growth factor (PDGF)--was postulated to cause the intimal proliferative response that is known to be important in atherosclerotic plaque development. Recent evidence from several laboratories indicates that the endothelium has the potential to play a more active role in plaque development than simply contributing to pathological sequelae resulting from the loss of the nonthrombogenic surface provided by the endothelium. First, the endothelial cell (EC) is the site of attachment, and possibly activation, of blood-borne monocytes which enter the vessel wall as an early event in experimental atherogenesis. We have obtained in vitro evidence that the expression of monocyte binding sites on the surface of EC is a regulatable process and that increased EC turnover and certain exogenous agents acting on EC cause increased monocyte adhesion. Similar events may be responsible for focal adhesion of monocytes to the endothelium in vivo following hypercholesterolemia. Secondly, EC in culture are capable of chemically modifying low density lipoprotein (LDL) by a free radical oxidation process that renders the LDL toxic to proliferating cells and recognizable to the scavenger receptor of monocyte-derived macrophages. Thus, by oxidation of LDL, the EC have the potential to play an active role both in the formation of lipid-laden foam cells and in the accumulation of necrotic tissue which are hallmarks of the atherosclerotic lesion. Thirdly, cultured EC have been recently shown to secrete multiple mitogens for cultured smooth muscle cells. One of these mitogens appears to be closely related, if not identical, to PDGF using the criteria of receptor binding and biochemical and immunological similarity. Production of growth factors by EC is a regulatable process that is stimulated by exogenous agents such as endotoxin and phorbol esters which cause severe injury to cultured EC. Such a regulatory mechanism may participate in the in vivo proliferation of vascular SMC during the atherosclerotic process.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Arteriosclerosis / metabolism*
  • Arteriosclerosis / pathology
  • Binding Sites
  • Biological Transport
  • Endothelium / metabolism*
  • Endothelium / pathology
  • Humans
  • Lipoproteins / metabolism
  • Monocytes / pathology
  • Platelet-Derived Growth Factor / metabolism

Substances

  • Lipoproteins
  • Platelet-Derived Growth Factor