Integrating bioenergetics and conservation biology: thermal sensitivity of digestive performance in Eastern Collared Lizards (Crotaphytus collaris) may affect population persistence

Conserv Physiol. 2020 Apr 4;8(1):coaa018. doi: 10.1093/conphys/coaa018. eCollection 2020.

Abstract

Information on bioenergetics can provide valuable insight into the ecology, life history and population dynamics of organisms. For ectothermic animals, thermal sensitivity of digestion is an important determinant of net assimilated energy budgets. A recent study in the Ozark Mountains indicated that eastern collared lizards (Crotaphytus collaris) restricted to encroached glades (characterized by woody vegetation encroachment) experience reduced environmental heat loads and have reduced age-specific growth and reproductive rates compared to populations in intact glades. To assess the potential impact of reduced body temperatures on assimilation rates of C. collaris in encroached glades, we conducted feeding trials across four temperature treatments (28, 31, 34 and 37°C). We tested for temperature effects on voluntary feeding rates, passage times, apparent assimilated energy (AE) and metabolizable energy (ME). Passage times decreased and voluntary feeding rates increased significantly with increasing temperature. Consumption explained the majority of variance in AE and ME, followed by the effect of temperature treatments. Using data on voluntary feeding rates, passage times and ME as a function of temperature, we estimated over a 10-fold increase in predicted daily assimilated energy across temperature treatments (28°C = 0.58 kJ/day, 31°C = 1.20 kJ/day, 34°C = 4.30 kJ/day, 37°C = 7.95 kJ/day). Thus, lower heat loads in encroached glades may cause reduced body temperature and result in restricted energy assimilation rates. Our study provides a novel approach to the integration of bioenergetics and conservation and shows the efficacy of using information on digestive performance to investigate underlying mechanisms in a conservation context.

Keywords: feeding rate; metabolizable energy; net assimilated energy; passage time; thermal performance.