Electrospun Ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars

J Mater Chem B. 2013 Sep 21;1(35):4428-4437. doi: 10.1039/c3tb20441c. Epub 2013 Jul 25.

Abstract

Studies have explored many approaches to prevent and treat hypertrophic scars. However, most of them inhibit hypertrophic scars after their formation, without taking into account repairing tissue damage in the early stage and inhibiting scar hyperplasia in the late stage through combining treatments. In this study, Ginsenoside Rg3 (Rg3) loaded poly(d,l-lactide-co-glycolide) (PLGA) electrospun fibrous scaffolds were prepared by a co-solvent electrospinning method, and then hyaluronic acid (HA) was coated on the surface of the drug-loaded electrospun fibers by a pressure-driven permeation (PDP) wrapped method. The hydrophilic Rg3/PLGA/HA electrospun fibrous scaffolds showed the effect of combining treatments of promoting wound healing in the early stage and inhibiting scar hyperplasia in the late stage. The improved hydrophilicity together with a proper porous structure, a stable fibrous structure, durable mechanical properties and a similar drug release model suggested that the Rg3/PLGA electrospun scaffold coated with HA via PDP has great potential for drug-loaded tissue engineering scaffolds. The in vivo animal results showed that the Rg3/PLGA/HA could promote wound healing earlier and significantly inhibit scar hyperplasia compared to other control groups from macroscopic, histologic evaluation, and expression of collagen type I. The Rg3/PLGA/HA electrospun fibrous scaffolds open a new combined therapeutic approach for inhibiting hypertrophic scars.