Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues

Talanta. 2020 May 1:211:120706. doi: 10.1016/j.talanta.2019.120706. Epub 2019 Dec 31.

Abstract

Encapsulating functional nanomaterials within the bulk of metal-organic frameworks (MOFs) offers the opportunity to construct high-performance hybrid coating materials for solid phase microextraction (SPME). In this work, we proposed the facile synthesis of a superhydrophobic MOF composite material (NSZIF-8Si) by growing ZIF-8 on MnxOy nanosheet (NS) and subsequently depositing short-chain polysiloxane on the surface of the composite. A novel SPME fiber was successfully prepared based on the NSZIF-8Si composite. The NSZIF-8Si fiber possessed outstanding thermal stability (up to 450 °C). In headspace SPME of BTEX, the home-made fiber exhibited extraction efficiencies much higher than the commercially available PDMS fiber. This phenomenon was due to the synergetic cooperation of the π-π stacking and the hydrophobic interactions between the NSZIF-8Si coating and the analyte molecules, as well as the increased aspect ratio of the MOF grown on the nanosheet. The established method achieved wide linearity (5-2000 ng L-1) and low LODs (0.02 ng L-1 to 0.21 ng L-1). Satisfactory recoveries were obtained in the analysis of real water samples collected from the Pearl River, indicative of the good reliability of the established method for real-scenario applications. This work might provide critical insights in constructing novel NS/MOF composite materials for the development of high-performance SPME fiber coatings.

Keywords: BTEX; Composite; MOFs; Nanosheet; Solid phase microextraction.