A Role for Postsynaptic Density 95 and Its Binding Partners in Models of Traumatic Brain Injury

J Neurotrauma. 2019 Jul 1;36(13):2129-2138. doi: 10.1089/neu.2018.6291. Epub 2019 Mar 28.

Abstract

Postsynaptic density 95 (PSD-95), the major scaffold protein at excitatory synapses, plays a major role in mediating intracellular signaling by synaptic N-methyl-d-aspartate (NMDA) type glutamate receptors. Despite the fact that much is known about the role of PSD-95 in NMDA-mediated toxicity, less is known about its role in mechanical injury, and more specifically, in traumatic brain injury (TBI). Given that neural circuitry is disrupted after TBI and that PSD-95 and its interactors end-binding protein 3 (EB3) and adenomatous polyposis coli (APC) shape dendrites, we examined whether changes to these proteins and their interactions occur after brain trauma. Here, we report that total levels of PSD-95 and the interaction of PSD-95 with EB3 increase at 1 and 7 days after moderate controlled cortical impact (CCI), but these changes do not occur after mild injury. Because changes occur to PSD-95 following brain trauma in vivo, we next considered the functional consequences of PSD-95 alterations in vitro. Rapid deformation of cortical neurons leads to neuronal death 72 h after injury, but this outcome is not dependent on PSD-95 expression. However, disruptions in dendritic arborization following stretch injury in vitro require PSD-95 expression, and these changes in arborization can be mimicked with expression of PSD-95 mutants lacking the second PDZ domain. Thus, PSD-95 and its interactors may serve as therapeutic targets for repairing dendrites after TBI.

Keywords: APC; CCI; PSD-95; TBI; dendrite morphology, EB3; mechanical injury; stretch-induced injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenomatous Polyposis Coli Protein / metabolism*
  • Animals
  • Brain Concussion / metabolism*
  • Brain Concussion / pathology
  • Brain Injuries, Traumatic / metabolism*
  • Brain Injuries, Traumatic / pathology
  • Disease Models, Animal
  • Disks Large Homolog 4 Protein / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microtubule-Associated Proteins / metabolism*

Substances

  • Adenomatous Polyposis Coli Protein
  • Disks Large Homolog 4 Protein
  • Dlg4 protein, mouse
  • EB3 protein, mouse
  • Microtubule-Associated Proteins
  • adenomatous polyposis coli protein, mouse