The fortification method relying on assumed human milk composition overestimates the actual energy and macronutrient intakes in very preterm infants

Matern Health Neonatol Perinatol. 2018 Sep 17:4:22. doi: 10.1186/s40748-018-0090-4. eCollection 2018.

Abstract

Background: To achieve recommended nutrient intakes in preterm infants, the target fortification method of human milk (HM) was proposed as an alternative to standard fortification method. We aimed to compare assumed energy and macronutrient intakes based on standard fortified HM with actual intakes relying on measured composition of human milk (HM), in a cohort of HM-fed very preterm infants.

Methods: This study is a secondary retrospective analysis, in which assumed energy and macronutrient contents of daily pools of own mother's milk (OMM) from 33 mothers and donated HM (DHM) delivered to infants were compared with the measured values using a mid-infrared HM analyzer. A fortification method consisting of modular protein and/or fat supplements added to standard fortified HM was used to provide the minimum recommended daily intakes of energy 110 Kcal/kg and protein up to 4.0 g/kg. Assumed nutrient intakes were compared with actual nutrient intakes from full enteral feeding to 35 weeks plus 6 days postmenstrual age, using the Wilcoxon matched-pairs signed ranks test.

Results: The composition of 1181 samples of daily pools of HM were measured. For 90.2% of study days, infants were exclusively fed OMM and in remaining days fed OMM plus DHM. Comparing with reported preterm OMM composition, measured protein concentration was significantly lower, and energy and other macronutrient concentrations were lower only from the second to third postnatal week. Using fortified HM, the actual median daily intakes of energy, protein, and fat were significantly lower (113.3 vs. 120.7 Kcal/kg, 4.45 vs. 4.73 g/kg, and 4.96 vs. 5.35 g/kg, respectively) and the actual protein-to-energy ratio (PER) significantly higher than what was assumed (4.2 vs. 4.0), without differences in carbohydrate intake.

Conclusions: When fortifying the HM, we used conservative target intakes trying not to exceed the osmolarity recommended for infant feeds. Actual energy, protein and fat intakes in OMM were significantly lower than assumed. This resulted in inadequate intake using our fortification method, that did not compensate the suboptimal measured energy and macronutrient contents of OMM delivered. Further studies comparing assumed with the gold standard target fortification are needed to determine safe upper limits of assumed fortification.

Keywords: Human milk composition; Human milk fortification; Nutrient intake; Target fortification; Very preterm infants.