Upconversion detector for range-resolved DIAL measurement of atmospheric CH4

Opt Express. 2018 Feb 19;26(4):3850-3860. doi: 10.1364/OE.26.003850.

Abstract

We demonstrate a robust, compact, portable and efficient upconversion detector (UCD) for a differential absorption lidar (DIAL) system designed for range-resolved methane (CH4) atmospheric sensing. The UCD is built on an intracavity pump system that mixes a 1064 nm pump laser with the lidar backscatter signal at 1646 nm in a 25-mm long periodically poled lithium niobate crystal. The upconverted signal at 646 nm is detected by a photomultiplier tube (PMT). The UCD with a noise equivalent power around 127 fW/Hz1/2 outperforms a conventional InGaAs based avalanche photodetector when both are used for DIAL measurements. Using the UCD, CH4 DIAL measurements have been performed yielding differential absorption optical depths with relative errors of less than 11% at ranges between 3 km and 9 km.