Life cycle analysis of a new modular greening system

Sci Total Environ. 2018 Jun 15:627:1146-1153. doi: 10.1016/j.scitotenv.2018.01.198. Epub 2018 Feb 6.

Abstract

The construction and use of buildings represent about half of the extracted materials and energy consumption, and around one third of the water consumption and waste produced in the European Union. Therefore it is becoming more important to use sustainable materials that reduce the environmental impacts of construction, by conserving and using resources more efficiently. Green walls can be used as a sustainable strategy to reduce the environmental impact of buildings. The aim of this study is to evaluate the environmental impact of a new modular system for green roofs and green walls (Geogreen) which uses waste and sustainable materials in its composition. A life cycle analysis (LCA) is used to evaluate the long term environmental benefits of this system. The life cycle analysis (LCA) is carried according to ISO 14040/44 using GaBi software and CML 2001 impact category indicators. The adopted functional unit is the square meter of each material required to assemble the Geogreen system. This study also compares the environmental performance of the Geogreen system with other living wall systems and other cladding materials using data from the literature. This LCA study of the Geogreen system became relevant to identify a curing process with a major impact on GWP due to the energy consumed in this process. A change on this process allowed reducing 74% of the overall GWP. After this change it can be noticed that the Geogreen System presents one of the lowest environmental burden when compared to other construction systems.

Keywords: Environmental impacts; Green roofs; Green walls; Life cycle analysis; Modular system; Sustainability.