Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells

Epigenetics. 2017 Sep;12(9):764-778. doi: 10.1080/15592294.2017.1346775. Epub 2017 Nov 24.

Abstract

Orexin neurons regulate critical brain activities for controlling sleep, eating, emotions, and metabolism, and impaired orexin neuron function results in several neurologic disorders. Therefore, restoring normal orexin function and understanding the mechanisms of loss or impairment of orexin neurons represent important goals. As a step toward that end, we generated human orexin neurons from induced pluripotent stem cells (hiPSCs) by treatment with N-acetyl-d-mannosamine (ManNAc) and its derivatives. The generation of orexin neurons was associated with DNA hypomethylation, histone H3/H4 hyperacetylation, and hypo-O-GlcNAcylation on the HCRT gene locus, and, thereby, the treatment of inhibitors of SIRT1 and OGT were effective at inducing orexin neurons from hiPSCs. The prolonged exposure of orexin neurons to high glucose in culture caused irreversible silencing of the HCRT gene, which was characterized by H3/H4 hypoacetylation and hyper-O-GlcNAcylation. The DNA hypomethylation status, once established in orexin neurogenesis, was maintained in the HCRT-silenced orexin neurons, indicating that histone modifications, but not DNA methylation, were responsible for the HCRT silencing. Thus, the epigenetic status of the HCRT gene is unique to the hyperglycemia-induced silencing. Intriguingly, treatment of ManNAc and its derivatives reactivated HCRT gene expression, while inhibitors SIRT1 and the OGT did not. The present study revealed that the HCRT gene was silenced by the hyperglycemia condition, and ManNAc and its derivatives were useful for restoring the orexin neurons.

Keywords: Histone acetylation; O-GlcNAcylation; hyperglycemia; neurodegeneration; orexin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • DNA Methylation
  • Epigenesis, Genetic
  • Gene Silencing / drug effects
  • Hexosamines / pharmacology*
  • Histones / metabolism
  • Humans
  • Hyperglycemia / genetics*
  • Induced Pluripotent Stem Cells
  • Neurons / drug effects
  • Neurons / metabolism
  • Orexins / genetics*
  • Orexins / metabolism

Substances

  • HCRT protein, human
  • Hexosamines
  • Histones
  • Orexins
  • N-acetylmannosamine

Grants and funding

This study was supported by the Advanced Research for Medical Products Mining Program of the National Institute of Biomedical Innovation (NIBIO), Japan (to K.S.), Lotte Shigemitsu Prize, Japan (to K.H. and K.S), a Grant-in-Aid for Scientific Research A from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 26252052, to K.S.) and Mizutani Foundation for Glycoscience, Japan (to Y. I and K.S.)