GENETIC FINGERPRINT-INFERRED POPULATION SUBDIVISION AND SPATIAL GENETIC TESTS FOR ISOLATION BY DISTANCE AND ADAPTATION IN THE COASTAL PLANT LIMONIUM CAROLINIANUM

Evolution. 1997 Oct;51(5):1457-1468. doi: 10.1111/j.1558-5646.1997.tb01469.x.

Abstract

This paper examines two wild populations of Limonium carolinianum for population genetic subdivision and spatial patterns of genetic variation in an attempt to simultaneously test for both the action of local adaptation to tidal gradients and isolation by distance (IBD). A VNTR (variable number of tandem repeats) genetic "fingerprinting" marker was used to infer relatedness among mapped plants in two populations. Band sharing within and between populations estimated F'ST , an approximate measure of FST . Regression models were used to analyze the relationship between band sharing and spatial separation in tidal elevation and horizontal distance, as well as the relationship of fecundity differences with band sharing and spatial distance. Populations differed in band size frequency distributions and mean number of bands per profile and, therefore, likely differed in effective population size. F'ST was estimated at 0.0678 and was significantly greater than F'ST among randomly constructed subpopulations. Band sharing decreased 0.13% per meter in one population but showed no significant relation to distance in the other. In the population with significant IBD band sharing increased with increasingly different tidal elevation, contrary to an adaptive hypothesis, possibly due to directional gene flow or drift. Deme sizes were approximately 25 meters and greater than 100 meters, spanning larger areas than the entire environmental gradient. Fecundity differences were not associated with spatial parameters or band sharing. Unequal potential maternal fecundity measured as variance in number of seeds per maternal family was a significant source of genetic sampling variance. The VNTR marker employed is capable of detecting adaptation as identity by descent in ecological time and is an appropriate method for estimating the net evolutionary fate of polygenic traits. The results show that the net balance between selection along an environmental gradient and the effects of IBD and unequal maternal fecundity favor genetic differentiation by random processes in populations of Limonium.

Keywords: Genetic drift; VNTR genetic marker; isolation by distance; local adaptation; tidal gradient.