Versatile Gap Mode Plasmon under ATR Geometry towards Single Molecule Raman, Laser Trapping and Photocatalytic Reactions

Anal Sci. 2017;33(4):417-426. doi: 10.2116/analsci.33.417.

Abstract

We have investigated various aspects of a gap mode plasmon to establish it as an analytical tool. First, markedly large (107 - 109) enhancement factors for the Raman scattering intensity from a thiophenol (TP) monolayer sandwiched by Ag films on a prism and silver nanoparticles (AgNPs) were obtained under attenuated total reflection (ATR) geometry. Second, AgNPs with a radius of ∼20 nm were optically trapped and immobilized on TP-covered Ag films under a gap mode resonance with extremely weak laser power density of ∼1 μW/μm2 at 532 nm. The observed optical trapping and immobilization were theoretically rationalized using a dipole-dipole coupling and van der Waals interaction between AgNPs and Ag films. Third, p-alkyl TP molecules such as p-methyl TP, p-ethyl TP, p-isopropyl TP, and p-tertiary butyl TP were photocatalytically oxidized into p-carboxyl TP, whereas o- and m-methyl TP did not show such reactions.