A simple method to improve the stability of docetaxel micelles

Sci Rep. 2016 Nov 11:6:36957. doi: 10.1038/srep36957.

Abstract

Self-assembled polymeric micelles have been widely applied in drug delivery systems. In this study, we found that pH value of micellar system solution was the decisive factor of physical stability. Furthermore, the weak basic solution could maintain the solution clarification for a relative long time. To investigate the stability of polymeric micelles in different pH solutions, the micellar particle size and the docetaxel content remaining in solution were detected at predetermined time points. The crystallographic assay of freeze-drying powder was characterized by an X-ray diffractometer. In vitro release results indicated that the PBS had little influence on the sustained-release effect of docetaxel-loaded polymeric micelles (DPM). Besides, the safety of micellar formulation was determined by an MTT assay on HEK293 cells, and the anti-tumor activity was tested on MCF-7 cells. The results demonstrated that DPM adjusted with PBS (DPM (PBS)) was of low toxicity and maintained the effectiveness of docetaxel. In vivo antitumor results indicated that DPM (PBS) had better antitumor efficacy than common docetaxel injection (DTX). Thus it was concluded that regulation of micellar solution PH by PBS is a safe and effective method to improve the physical stability of DPM. It might promote the application of micellar formulation in clinical applications.

Publication types

  • Research Support, Non-U.S. Gov't