Charge transport in a liquid crystalline triphenylene polymer monolayer at air-solid interface

Phys Chem Chem Phys. 2016 Apr 28;18(17):12101-7. doi: 10.1039/c5cp07531a.

Abstract

We have prepared a monolayer of a novel liquid crystalline polymer derived from 2,6-dihydroxy-3,7,10,11-tetraalkoxy-triphenylene (PHAT) at an air-water interface and transferred it onto freshly cleaved mica as well as gold coated mica substrates by the Langmuir-Blodgett (L-B) technique. The atomic force microscope (AFM) images of these L-B films show a uniform coverage with a thickness of 1.5 nm. Electrical conductivity measurements were carried out on the PHAT monolayer deposited on the gold coated mica substrate using a current sensing AFM (CSAFM). The gold substrate-PHAT monolayer-cantilever tip of CSAFM forms a metal-insulator-metal (M-I-M) junction. The CSAFM yields a non-linear current-voltage (I-V) curve for the M-I-M junction. The analysis of the I-V characteristics of the M-I-M junction indicated that the charge transport in the liquid crystalline polymer monolayer is by the direct tunneling mechanism. The barrier height for the PHAT monolayer was estimated to be 1.22 ± 0.02 eV.

Publication types

  • Research Support, Non-U.S. Gov't