Induction of indoleamine 2,3-dioxygenase (IDO) enzymatic activity contributes to interferon-gamma induced apoptosis and death receptor 5 expression in human non-small cell lung cancer cells

Asian Pac J Cancer Prev. 2014;15(18):7995-8001. doi: 10.7314/apjcp.2014.15.18.7995.

Abstract

Interferon-gamma (IFN-γ) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-γ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-γ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-γ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-γ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-γ-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-γ. These results provide new mechanistic insights into interferon-γ antitumor activity and further support IFN-γ as a potential therapeutic adjuvant for the treatment of NCSLC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma / drug therapy
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Antiviral Agents / pharmacology
  • Apoptosis / drug effects*
  • Blotting, Western
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects
  • Cytochromes c / metabolism
  • Humans
  • Indoleamine-Pyrrole 2,3,-Dioxygenase / metabolism*
  • Interferon-gamma / pharmacology*
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Membrane Potential, Mitochondrial / drug effects
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / metabolism*
  • Tumor Cells, Cultured

Substances

  • Antiviral Agents
  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Interferon-gamma
  • Cytochromes c