Sequestering ability of phytate toward biologically and environmentally relevant trivalent metal cations

J Agric Food Chem. 2012 Aug 22;60(33):8075-82. doi: 10.1021/jf302007v. Epub 2012 Aug 7.

Abstract

Quantitative parameters for the interactions between phytate (Phy) and Al(3+), Fe(3+), and Cr(3+) were determined potentiometrically in NaNO(3) aqueous solutions at I = 0.10 mol L(-1) and T = 298.15 K. Different complex species were found in a wide pH range. The various species are partially protonated, depending on the pH in which they are formed, and are indicated with the general formula MH(q)Phy (with 0 ≤ q ≤ 6). In all cases, the stability of the FeH(q)Phy species is several log K units higher than that of the analogous AlH(q)Phy and CrH(q)Phy species. For example, for the MH(2)Phy species, the stability trend is log K(2) = 15.81, 20.61, and 16.70 for Al(3+), Fe(3+), and Cr(3+), respectively. The sequestering ability of phytate toward the considered metal cations was evaluated by calculating the pL(0.5) values (i.e., the total ligand concentration necessary to bind 50% of the cation present in trace in solution) at different pH values. In general, phytate results in a quite good sequestering agent toward all three cations in the whole investigated pH range, but the order of pL(0.5) depends on it. For example, at pH 5.0 it is pL(0.5) = 5.33, 5.44, and 5.75 for Fe(3+), Cr(3+), and Al(3+), respectively (Fe(3+) < Cr(3+) < Al(3+)); at pH 7.4 it is pL(0.5) = 9.94, 9.23, and 8.71 (Al(3+) < Cr(3+) < Fe(3+)), whereas at pH 9.0 it is pL(0.5) = 10.42, 10.87, and 8.34 (Al(3+) < Fe(3+) < Cr(3+)). All of the pL(0.5) values, and therefore the sequestering ability, regularly increase with increasing pH, and the dependence of pL(0.5) on pH was modeled using some empirical equations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aluminum / chemistry
  • Cations / chemistry*
  • Chromium / chemistry
  • Empirical Research
  • Hydrogen-Ion Concentration
  • Iron / chemistry
  • Ligands
  • Metals / metabolism*
  • Phytic Acid / metabolism*
  • Potentiometry / instrumentation
  • Potentiometry / methods

Substances

  • Cations
  • Ligands
  • Metals
  • Chromium
  • Phytic Acid
  • Aluminum
  • Iron